Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102370
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKatanin, A. A.en
dc.date.accessioned2021-08-31T15:03:22Z-
dc.date.available2021-08-31T15:03:22Z-
dc.date.issued2015-
dc.identifier.citationKatanin A. A. Functional renormalization-group approaches, one-particle (irreducible) reducible with respect to local Green’s functions, with dynamical mean-field theory as a starting point / A. A. Katanin. — DOI 10.1134/S1063776115050039 // Journal of Experimental and Theoretical Physics. — 2015. — Vol. 120. — Iss. 6. — P. 1085-1092.en
dc.identifier.issn10637761-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84938866937&doi=10.1134%2fS1063776115050039&partnerID=40&md5=72b0c2e9ed2a76e97bcfca9d063e00f1
dc.identifier.otherhttp://arxiv.org/pdf/1412.7266m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102370-
dc.description.abstractWe consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF2RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32]. We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model. © 2015, Pleiades Publishing, Inc.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMaik Nauka-Interperiodica Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Exp. Theor. Phys.2
dc.sourceJournal of Experimental and Theoretical Physicsen
dc.subjectMEAN FIELD THEORYen
dc.subjectSTATISTICAL MECHANICSen
dc.subject2-D SYSTEMSen
dc.subjectCORRELATED ELECTRONIC SYSTEMSen
dc.subjectDYNAMICAL MEAN-FIELD THEORYen
dc.subjectFUNCTIONAL RENORMALIZATION GROUPen
dc.subjectIRREDUCIBLE REPRESENTATIONSen
dc.subjectRENORMALIZATION GROUPen
dc.subjectS FUNCTIONen
dc.subjectSECOND CLASSen
dc.subjectGROUP THEORYen
dc.titleFunctional renormalization-group approaches, one-particle (irreducible) reducible with respect to local Green’s functions, with dynamical mean-field theory as a starting pointen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi23997054-
dc.identifier.doi10.1134/S1063776115050039-
dc.identifier.scopus84938866937-
local.contributor.employeeKatanin, A.A., Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.description.firstpage1085-
local.description.lastpage1092-
local.issue6-
local.volume120-
dc.identifier.wos000358650800019-
local.contributor.departmentMiheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University, Yekaterinburg, 620002, Russian Federation
local.identifier.pure744b16af-614a-4158-bed0-35b4d3b36022uuid
local.identifier.pure322131-
local.identifier.eid2-s2.0-84938866937-
local.identifier.wosWOS:000358650800019-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84938866937.pdf180,65 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.