Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102352
Название: | Unary enhancements of inherently non-finitely based semigroups |
Авторы: | Auinger, K. Dolinka, I. Pervukhina, T. V. Volkov, M. V. |
Дата публикации: | 2014 |
Издатель: | Springer New York LLC |
Библиографическое описание: | Unary enhancements of inherently non-finitely based semigroups / K. Auinger, I. Dolinka, T. V. Pervukhina, et al. — DOI 10.1007/s00233-013-9509-4 // Semigroup Forum. — 2014. — Vol. 89. — Iss. 1. — P. 41-51. |
Аннотация: | This paper is a follow up of an article published in 2012 by three of the authors, more precisely, of a part of that article dealing with inherently nonfinitely based involutory semigroups. We exhibit a simple condition under which a finite involutory semigroup whose semigroup reduct is inherently nonfinitely based is also inherently nonfinitely based as a unary semigroup. As applications, we get already known as well as new examples of inherently nonfinitely based involutory semigroups. We also show that for finite regular semigroups, our condition is not only sufficient but also necessary for the property of being inherently nonfinitely based to persist. This leads to an algorithmic description of regular inherently nonfinitely based involutory semigroups. © 2013, Springer Science+Business Media New York. |
Ключевые слова: | INHERENTLY NONFINITELY BASED SEMIGROUP INVOLUTORY SEMIGROUP MATRIX SEMIGROUP REGULAR SEMIGROUP TWISTED BRANDT MONOID TWISTED SEMILATTICE |
URI: | http://elar.urfu.ru/handle/10995/102352 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 84942190731 |
Идентификатор WOS: | 000340870800003 |
Идентификатор PURE: | 405728 |
ISSN: | 371912 |
DOI: | 10.1007/s00233-013-9509-4 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84942190731.pdf | 108,4 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.