Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102320
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Alam, J. | en |
dc.contributor.author | Evans, W. | en |
dc.contributor.author | Kobourov, S. | en |
dc.contributor.author | Pupyrev, S. | en |
dc.contributor.author | Toeniskoetter, J. | en |
dc.contributor.author | Ueckerdt, T. | en |
dc.date.accessioned | 2021-08-31T15:03:08Z | - |
dc.date.available | 2021-08-31T15:03:08Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Contact representations of graphs in 3D / J. Alam, W. Evans, S. Kobourov, et al. — DOI 10.1007/978-3-319-21840-3_2 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9214. — P. 14-27. | en |
dc.identifier.isbn | 9783319218397 | - |
dc.identifier.issn | 3029743 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951816003&doi=10.1007%2f978-3-319-21840-3_2&partnerID=40&md5=ffb13dff3bae6e2ac5cecfe37b59de8a | |
dc.identifier.other | http://arxiv.org/pdf/1501.00304 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102320 | - |
dc.description.abstract | We study contact representations of non-planar graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We present a liner-time algorithm constructing a representation of a 3-connected planar graph, its dual, and the vertex-face incidence graph with 3D boxes. We then investigate contact representations of 1- planar graphs. We first prove that optimal 1-planar graphs without separating 4-cycles admit a contact representation with 3D boxes. However, since not every optimal 1-planar graph can be represented in this way, we also consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graphs with L-shapes. © Springer International Publishing Switzerland 2015. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | ALGORITHMS | en |
dc.subject | DATA STRUCTURES | en |
dc.subject | GEOMETRY | en |
dc.subject | GRAPHIC METHODS | en |
dc.subject | 1-PLANAR GRAPHS | en |
dc.subject | 3-CONNECTED PLANAR GRAPHS | en |
dc.subject | 3D OBJECT | en |
dc.subject | INCIDENCE GRAPHS | en |
dc.subject | NON-PLANAR GRAPHS | en |
dc.subject | QUADRATIC TIME ALGORITHMS | en |
dc.subject | REPRESENTATIONS OF GRAPHS | en |
dc.subject | TIME ALGORITHMS | en |
dc.subject | GRAPH THEORY | en |
dc.title | Contact representations of graphs in 3D | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/978-3-319-21840-3_2 | - |
dc.identifier.scopus | 84951816003 | - |
local.contributor.employee | Alam, J., Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.employee | Evans, W., Department of Computer Science, University of British Columbia, Vancouver, Canada | |
local.contributor.employee | Kobourov, S., Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.employee | Pupyrev, S., Department of Computer Science, University of Arizona, Tucson, United States, Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Toeniskoetter, J., Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.employee | Ueckerdt, T., Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany | |
local.description.firstpage | 14 | - |
local.description.lastpage | 27 | - |
local.volume | 9214 | - |
local.contributor.department | Department of Computer Science, University of Arizona, Tucson, United States | |
local.contributor.department | Department of Computer Science, University of British Columbia, Vancouver, Canada | |
local.contributor.department | Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.department | Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany | |
local.identifier.pure | 570052 | - |
local.identifier.pure | be24f858-16ed-43b3-8ef2-8dc4986c25aa | uuid |
local.identifier.eid | 2-s2.0-84951816003 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-84951816003.pdf | 591,14 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.