Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102320
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlam, J.en
dc.contributor.authorEvans, W.en
dc.contributor.authorKobourov, S.en
dc.contributor.authorPupyrev, S.en
dc.contributor.authorToeniskoetter, J.en
dc.contributor.authorUeckerdt, T.en
dc.date.accessioned2021-08-31T15:03:08Z-
dc.date.available2021-08-31T15:03:08Z-
dc.date.issued2015-
dc.identifier.citationContact representations of graphs in 3D / J. Alam, W. Evans, S. Kobourov, et al. — DOI 10.1007/978-3-319-21840-3_2 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2015. — Vol. 9214. — P. 14-27.en
dc.identifier.isbn9783319218397-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84951816003&doi=10.1007%2f978-3-319-21840-3_2&partnerID=40&md5=ffb13dff3bae6e2ac5cecfe37b59de8a
dc.identifier.otherhttp://arxiv.org/pdf/1501.00304m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102320-
dc.description.abstractWe study contact representations of non-planar graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We present a liner-time algorithm constructing a representation of a 3-connected planar graph, its dual, and the vertex-face incidence graph with 3D boxes. We then investigate contact representations of 1- planar graphs. We first prove that optimal 1-planar graphs without separating 4-cycles admit a contact representation with 3D boxes. However, since not every optimal 1-planar graph can be represented in this way, we also consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graphs with L-shapes. © Springer International Publishing Switzerland 2015.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectALGORITHMSen
dc.subjectDATA STRUCTURESen
dc.subjectGEOMETRYen
dc.subjectGRAPHIC METHODSen
dc.subject1-PLANAR GRAPHSen
dc.subject3-CONNECTED PLANAR GRAPHSen
dc.subject3D OBJECTen
dc.subjectINCIDENCE GRAPHSen
dc.subjectNON-PLANAR GRAPHSen
dc.subjectQUADRATIC TIME ALGORITHMSen
dc.subjectREPRESENTATIONS OF GRAPHSen
dc.subjectTIME ALGORITHMSen
dc.subjectGRAPH THEORYen
dc.titleContact representations of graphs in 3Den
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-319-21840-3_2-
dc.identifier.scopus84951816003-
local.contributor.employeeAlam, J., Department of Computer Science, University of Arizona, Tucson, United States
local.contributor.employeeEvans, W., Department of Computer Science, University of British Columbia, Vancouver, Canada
local.contributor.employeeKobourov, S., Department of Computer Science, University of Arizona, Tucson, United States
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, Tucson, United States, Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeToeniskoetter, J., Department of Computer Science, University of Arizona, Tucson, United States
local.contributor.employeeUeckerdt, T., Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
local.description.firstpage14-
local.description.lastpage27-
local.volume9214-
local.contributor.departmentDepartment of Computer Science, University of Arizona, Tucson, United States
local.contributor.departmentDepartment of Computer Science, University of British Columbia, Vancouver, Canada
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.departmentDepartment of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
local.identifier.pure570052-
local.identifier.purebe24f858-16ed-43b3-8ef2-8dc4986c25aauuid
local.identifier.eid2-s2.0-84951816003-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84951816003.pdf591,14 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.