Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102302
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMilstein, G. N.en
dc.contributor.authorSchoenmakers, J.en
dc.date.accessioned2021-08-31T15:03:01Z-
dc.date.available2021-08-31T15:03:01Z-
dc.date.issued2015-
dc.identifier.citationMilstein G. N. Uniform approximation of the Cox-Ingersoll-Ross process / G. N. Milstein, J. Schoenmakers. — DOI 10.1239/aap/1449859803 // Advances in Applied Probability. — 2015. — Vol. 47. — Iss. 4. — P. 1132-1156.en
dc.identifier.issn18678-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84956854529&doi=10.1239%2faap%2f1449859803&partnerID=40&md5=9209b129a999841e9196ffca2316ca7f
dc.identifier.otherhttp://arxiv.org/pdf/1312.0876m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102302-
dc.description.abstractThe Doss-Sussmann (DS) approach is used for uniform simulation of the Cox-Ingersoll-Ross (CIR) process. TheDS formalism allows us to express trajectories of the CIR process through solutions of some ordinary differential equation (ODE) depending on realizations of aWiener process involved. By simulating the first-passage times of the increments of the Wiener process to the boundary of an interval and solving the ODE, we uniformly approximate the trajectories of the CIR process. In this respect special attention is payed to simulation of trajectories near 0. From a conceptual point of view the proposed method gives a better quality of approximation (from a pathwise point of view) than standard, even exact, simulation of the stochastic differential equation at some deterministic time grid. © 2015 Applied Probability Trust.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherApplied Probability Trusten
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAdv Appl Probab2
dc.sourceAdvances in Applied Probabilityen
dc.subjectBESSEL FUNCTIONen
dc.subjectCONFLUENT HYPERGEOMETRIC EQUATIONen
dc.subjectCOX-INGERSOLL-ROSS PROCESSen
dc.subjectDOSS-SUSSMANN FORMALISMen
dc.subjectBESSEL FUNCTIONSen
dc.subjectDIFFERENTIAL EQUATIONSen
dc.subjectORDINARY DIFFERENTIAL EQUATIONSen
dc.subjectSTOCHASTIC SYSTEMSen
dc.subjectDOSS-SUSSMANN FORMALISMen
dc.subjectFIRST PASSAGE TIMEen
dc.subjectHYPERGEOMETRICen
dc.subjectORDINARY DIFFERENTIAL EQUATION (ODE)en
dc.subjectSIMULATION OF TRAJECTORYen
dc.subjectSTOCHASTIC DIFFERENTIAL EQUATIONSen
dc.subjectUNIFORM APPROXIMATIONen
dc.subjectUNIFORM SIMULATIONSen
dc.subjectTRAJECTORIESen
dc.titleUniform approximation of the Cox-Ingersoll-Ross processen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1239/aap/1449859803-
dc.identifier.scopus84956854529-
local.contributor.employeeMilstein, G.N., Ural Federal University, Lenin Str. 51, Ekaterinburg, 620083, Russian Federation
local.contributor.employeeSchoenmakers, J., Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, Berlin, 10117, Germany
local.description.firstpage1132-
local.description.lastpage1156-
local.issue4-
local.volume47-
dc.identifier.wos000368468200010-
local.contributor.departmentUral Federal University, Lenin Str. 51, Ekaterinburg, 620083, Russian Federation
local.contributor.departmentWeierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, Berlin, 10117, Germany
local.identifier.pure09883f02-d21b-4398-97fd-d68c494237d3uuid
local.identifier.pure652464-
local.identifier.eid2-s2.0-84956854529-
local.identifier.wosWOS:000368468200010-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84956854529.pdf462,86 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.