Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102297
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBekos, M. A.en
dc.contributor.authorVan, Dijk, T. C.en
dc.contributor.authorFink, M.en
dc.contributor.authorKindermann, P.en
dc.contributor.authorKobourov, S.en
dc.contributor.authorPupyrev, S.en
dc.contributor.authorSpoerhase, J.en
dc.contributor.authorWolff, A.en
dc.date.accessioned2021-08-31T15:03:00Z-
dc.date.available2021-08-31T15:03:00Z-
dc.date.issued2014-
dc.identifier.citationImproved approximation algorithms for box contact representations / M. A. Bekos, T. C. Van Dijk, M. Fink, et al. — DOI 10.1007/978-3-662-44777-2_8 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2014. — Vol. 8737 LNCS. — P. 87-99.en
dc.identifier.isbn9783662447765-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958522604&doi=10.1007%2f978-3-662-44777-2_8&partnerID=40&md5=ef649b3f6dbf5425455fcd5bfb57bdbc
dc.identifier.otherhttps://repository.arizona.edu/bitstream/10150/623076/1/Kubourov_ApproximationAlgorithms.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102297-
dc.description.abstractWe study the following geometric representation problem: Given a graph whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the rectangles without overlaps in the plane such that two rectangles touch if the graph contains an edge between them. This problem is called Contact Representation of Word Networks (Crown) since it formalizes the geometric problem behind drawing word clouds in which semantically related words are close to each other. Crown is known to be NP-hard, and there are approximation algorithms for certain graph classes for the optimization version, Max-Crown, in which realizing each desired adjacency yields a certain profit. We show that the problem is APX-complete on bipartite graphs of bounded maximum degree. We present the first O(1)-approximation algorithm for the general case, when the input is a complete weighted graph, and for the bipartite case. Since the subgraph of realized adjacencies is necessarily planar, we consider several planar graph classes (stars, trees, outerplanar, and planar graphs), improving upon the known results. For some graph classes, we also describe improvements in the unweighted case, where each adjacency yields the same profit. © 2014 Springer-Verlag Berlin Heidelberg.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectAPPROXIMATION ALGORITHMSen
dc.subjectGEOMETRYen
dc.subjectGRAPHIC METHODSen
dc.subjectPROFITABILITYen
dc.subjectAPX-COMPLETEen
dc.subjectBIPARTITE GRAPHSen
dc.subjectGEOMETRIC PROBLEMSen
dc.subjectGEOMETRIC REPRESENTATIONen
dc.subjectMAXIMUM DEGREEen
dc.subjectSEMANTICALLY-RELATED WORDSen
dc.subjectWEIGHTED GRAPHen
dc.subjectWORD NETWORKSen
dc.subjectGRAPH THEORYen
dc.titleImproved approximation algorithms for box contact representationsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-662-44777-2_8-
dc.identifier.scopus84958522604-
local.contributor.employeeBekos, M.A., Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
local.contributor.employeeVan Dijk, T.C., Lehrstuhl für Informatik i, Universität Würzburg, Germany
local.contributor.employeeFink, M., Lehrstuhl für Informatik i, Universität Würzburg, Germany, Department of Computer Sicence, University of California, Santa Barbara, United States
local.contributor.employeeKindermann, P., Lehrstuhl für Informatik i, Universität Würzburg, Germany
local.contributor.employeeKobourov, S., Department of Computer Science, University of Arizona, United States
local.contributor.employeePupyrev, S., Department of Computer Science, University of Arizona, United States, Institute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.contributor.employeeSpoerhase, J., Lehrstuhl für Informatik i, Universität Würzburg, Germany
local.contributor.employeeWolff, A., Lehrstuhl für Informatik i, Universität Würzburg, Germany
local.description.firstpage87-
local.description.lastpage99-
local.volume8737 LNCS-
dc.identifier.wos000345502900008-
local.contributor.departmentWilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
local.contributor.departmentLehrstuhl für Informatik i, Universität Würzburg, Germany
local.contributor.departmentDepartment of Computer Science, University of Arizona, United States
local.contributor.departmentInstitute of Mathematics and Computer Science, Ural Federal University, Russian Federation
local.contributor.departmentDepartment of Computer Sicence, University of California, Santa Barbara, United States
local.identifier.pure7b85c76d-3523-4777-870c-713742c8de09uuid
local.identifier.pure1596577-
local.identifier.eid2-s2.0-84958522604-
local.identifier.wosWOS:000345502900008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-84958522604.pdf810,52 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.