Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102211
Title: Endomorphisms of the lattice of epigroup varieties
Authors: Gusev, S. V.
Vernikov, B. M.
Issue Date: 2016
Publisher: Springer New York LLC
Citation: Gusev S. V. Endomorphisms of the lattice of epigroup varieties / S. V. Gusev, B. M. Vernikov. — DOI 10.1007/s00233-016-9825-6 // Semigroup Forum. — 2016. — Vol. 93. — Iss. 3. — P. 554-574.
Abstract: We consider epigroups as algebras with two operations (multiplication and pseudoinversion) and construct a countably infinite family of injective endomorphisms of the lattice of all epigroup varieties. An epigroup variety is said to be a variety of finite degree if all its nilsemigroups are nilpotent. We characterize epigroup varieties of finite degree in the language of identities and in terms of minimal forbidden subvarieties. © 2016, Springer Science+Business Media New York.
Keywords: EPIGROUP
LATTICE OF VARIETIES
VARIETY
VARIETY OF EPIGROUPS OF FINITE DEGREE
URI: http://hdl.handle.net/10995/102211
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 84988447951
PURE ID: 1304081
4a1e9498-fd04-4e46-8958-933a027f6ca6
ISSN: 371912
DOI: 10.1007/s00233-016-9825-6
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-84988447951.pdf206,9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.