Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102153
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShafikov, M. Z.en
dc.contributor.authorSuleymanova, A. F.en
dc.contributor.authorCzerwieniec, R.en
dc.contributor.authorYersin, H.en
dc.date.accessioned2021-08-31T15:02:10Z-
dc.date.available2021-08-31T15:02:10Z-
dc.date.issued2017-
dc.identifier.citationDesign Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough / M. Z. Shafikov, A. F. Suleymanova, R. Czerwieniec, et al. — DOI 10.1021/acs.chemmater.6b05175 // Chemistry of Materials. — 2017. — Vol. 29. — Iss. 4. — P. 1708-1715.en
dc.identifier.issn8974756-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85013996059&doi=10.1021%2facs.chemmater.6b05175&partnerID=40&md5=90e1eb512be06b91d8064fb3078ce5e8
dc.identifier.otherhttps://zenodo.org/record/2616362/files/Working%20Paper%20-%202017.Design%20Strategy%20for%20Ag%28I%29-Based%20Thermally%20Activated%20Delayed%20Fluorescence.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102153-
dc.description.abstractA design strategy for the development of Ag(I)-based materials for thermally activated delayed fluorescence (TADF) is presented. Although Ag(I) complexes usually do not show TADF, the designed material, Ag(dbp)(P2-nCB) [dbp = 2,9-di-n-butyl-1,10-phenanthroline, and P2-nCB = nido-carborane-bis(diphenylphosphine)], shows a TADF efficiency breakthrough exhibiting an emission decay time of τ(TADF) = 1.4 μs at a quantum yield of ΦPL = 100%. This is a consequence of three optimized parameters. (i) The strongly electron-donating negatively charged P2-nCB ligand destabilizes the 4d orbitals and leads to low-lying charge (CT) states of MLL′CT character, with L and L′ being the two different ligands, thus giving a small energy separation between the lowest singlet S1 and triplet T1 state of ΔE(S1-T1) = 650 cm-1 (80 meV). (ii) The allowedness of the S1 → S0 transition is more than 1 order of magnitude higher than those found for other TADF metal complexes, as shown experimentally and by time-dependent density functional theory calculations. Both parameters favor a short TADF decay time. (iii) The high quantum efficiency is dominantly related to the rigid molecular structure of Ag(dbp)(P2-nCB), resulting from the design strategy of introducing n-butyl substitutions at positions 2 and 9 of phenanthroline that sterically interact with the phenyl groups of the P2-nCB ligand. In particular, the shortest TADF decay time of τ(TADF) = 1.4 μs at a ΦPL value of 100%, reported so far, suggests the use of this outstanding material for organic light-emitting diodes (OLEDs). Importantly, the emission of Ag(dbp)(P2-nCB) is not subject to concentration quenching. Therefore, it may be applied even as a 100% emission layer. © 2017 American Chemical Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceChem. Mater.2
dc.sourceChemistry of Materialsen
dc.subjectDECAY (ORGANIC)en
dc.subjectDENSITY FUNCTIONAL THEORYen
dc.subjectFLUORESCENCEen
dc.subjectLIGANDSen
dc.subjectLIGHT EMITTING DIODESen
dc.subjectMETAL COMPLEXESen
dc.subjectORGANIC LIGHT EMITTING DIODES (OLED)en
dc.subjectCONCENTRATION QUENCHINGen
dc.subjectHIGH QUANTUM EFFICIENCYen
dc.subjectNEGATIVELY CHARGEDen
dc.subjectOPTIMIZED PARAMETERen
dc.subjectORGANIC LIGHT EMITTING DIODES(OLEDS)en
dc.subjectRIGID MOLECULAR STRUCTUREen
dc.subjectTHERMALLY ACTIVATED DELAYED FLUORESCENCESen
dc.subjectTIME DEPENDENT DENSITY FUNCTIONAL THEORY CALCULATIONSen
dc.subjectQUANTUM EFFICIENCYen
dc.titleDesign Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthroughen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1021/acs.chemmater.6b05175-
dc.identifier.scopus85013996059-
local.contributor.employeeShafikov, M.Z., Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany, Ural Federal University, Mira 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeSuleymanova, A.F., Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany, I. Postovsky Institute of Organic Synthesis, Ekaterinburg, 620041, Russian Federation
local.contributor.employeeCzerwieniec, R., Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany
local.contributor.employeeYersin, H., Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany
local.description.firstpage1708-
local.description.lastpage1715-
local.issue4-
local.volume29-
dc.identifier.wos000395358600029-
local.contributor.departmentInstitut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany
local.contributor.departmentUral Federal University, Mira 19, Ekaterinburg, 620002, Russian Federation
local.contributor.departmentI. Postovsky Institute of Organic Synthesis, Ekaterinburg, 620041, Russian Federation
local.identifier.pure5a443796-955b-41d0-ad47-d6080fa2d583uuid
local.identifier.pure1612190-
local.identifier.eid2-s2.0-85013996059-
local.identifier.wosWOS:000395358600029-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85013996059.pdf2,2 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.