Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102145
Название: | Numerical Modeling of Material Points Evolution in a System with Gravity |
Авторы: | Melkikh, A. V. Melkikh, E. A. Kozhevnikov, V. A. |
Дата публикации: | 2017 |
Издатель: | Cambridge University Press |
Библиографическое описание: | Melkikh A. V. Numerical Modeling of Material Points Evolution in a System with Gravity / A. V. Melkikh, E. A. Melkikh, V. A. Kozhevnikov. — DOI 10.4208/cicp.OA-2015-0004 // Communications in Computational Physics. — 2017. — Vol. 21. — Iss. 4. — P. 1118-1140. |
Аннотация: | The evolution of material points interacting via gravitational force in 3D space was investigated. At initial moment points with masses of 2.48 Sun masses are randomly distributed inside a cube with an edge of 5 light-years. The modeling was conducted at different initial distributions of velocities and different ratios between potential and kinetic energy of the points. As a result of modeling the time dependence of velocity distribution function of points was obtained. Dependence of particles fraction which had evaporated frominitial cluster on time for different initial conditions is obtained. In particular, it was obtained that the fraction of evaporated particles varies between 0,45 and 0,63. Mutual diffusion of two classes of particles at different initial conditions in the case when at initial moment of time both classes of particles occupy equal parts of cube was investigated. The maximum Lyapunov exponent of the system with different initial conditions was calculated. The obtained value weakly depends on the ratio between initial kinetic and potential energies and amounts approximately 10-5. Corresponding time of the particle trajectories divergence turned out to be 40-50 thousand years. © 2017 Global-Science Press. |
Ключевые слова: | LYAPUNOV EXPONENT MATERIAL POINTS SYSTEMS WITH GRAVITATION VELOCITY DISTRIBUTION FUNCTION |
URI: | http://elar.urfu.ru/handle/10995/102145 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85014816927 |
Идентификатор WOS: | 000396812700009 |
Идентификатор PURE: | 60a76e0d-0881-4681-9cfc-49cf25d3d5d9 1692239 |
ISSN: | 18152406 |
DOI: | 10.4208/cicp.OA-2015-0004 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85014816927.pdf | 808,31 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.