Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102125
Название: | Optimal policy identification: Insights from the German electricity market |
Авторы: | Herrmann, J. K. Savin, I. |
Дата публикации: | 2017 |
Издатель: | Elsevier Inc. |
Библиографическое описание: | Herrmann J. K. Optimal policy identification: Insights from the German electricity market / J. K. Herrmann, I. Savin. — DOI 10.1016/j.techfore.2017.04.014 // Technological Forecasting and Social Change. — 2017. — Vol. 122. — P. 71-90. |
Аннотация: | The diffusion of renewable electricity technologies is widely considered as crucial for establishing a sustainable energy system in the future. However, the required transition is unlikely to be achieved by market forces alone. For this reason, many countries implement various policy instruments to support this process, also by re-distributing related costs among all electricity consumers. This paper presents a novel history-friendly agent-based study aiming to explore the efficiency of different mixes of policy instruments by means of a Differential Evolution algorithm. Special emphasis of the model is devoted to the possibility of small scale renewable electricity generation, but also to the storage of this electricity using small scale facilities being actively developed over the last decade. Both combined pose an important instrument for electricity consumers to achieve partial or full autarky from the electricity grid, particularly after accounting for decreasing costs and increasing efficiency of both due to continuous innovation. Among other things, we find that the historical policy mix of Germany introduced too strong and inflexible demand-side instruments (like feed-in tariff) too early, thereby creating strong path-dependency for future policy makers and reducing their ability to react to technological but also economic shocks without further increases of the budget. © 2017 Elsevier Inc. |
Ключевые слова: | DIFFERENTIAL EVOLUTION ELECTRICITY STORAGE ENERGY GRID FEED-IN TARIFF RENEWABLE ENERGY BUDGET CONTROL COMMERCE ELECTRIC ENERGY STORAGE ELECTRIC POWER UTILIZATION EVOLUTIONARY ALGORITHMS OPTIMIZATION POWER MARKETS DIFFERENTIAL EVOLUTION ELECTRICITY STORAGES ENERGY GRIDS FEED-IN TARIFF RENEWABLE ENERGIES ELECTRIC POWER TRANSMISSION NETWORKS ALGORITHM ELECTRICITY GENERATION ELECTRICITY SUPPLY ENERGY MARKET FUTURE PROSPECT POLICY ANALYSIS POLICY IMPLEMENTATION POLICY MAKING RENEWABLE RESOURCE TARIFF STRUCTURE GERMANY |
URI: | http://elar.urfu.ru/handle/10995/102125 |
Условия доступа: | info:eu-repo/semantics/openAccess |
Идентификатор SCOPUS: | 85019064081 |
Идентификатор WOS: | 000407184300007 |
Идентификатор PURE: | 9b3a3abc-59ed-48cc-8883-1a592eb58e63 1971245 |
ISSN: | 401625 |
DOI: | 10.1016/j.techfore.2017.04.014 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85019064081.pdf | 2,09 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.