Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102113
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKondrat’ev, A. S.en
dc.contributor.authorMaslova, N. V.en
dc.contributor.authorRevin, D. O.en
dc.date.accessioned2021-08-31T15:01:51Z-
dc.date.available2021-08-31T15:01:51Z-
dc.date.issued2017-
dc.identifier.citationKondrat’ev A. S. On the pronormality of subgroups of odd index in finite simple symplectic groups / A. S. Kondrat’ev, N. V. Maslova, D. O. Revin. — DOI 10.1134/S0037446617030107 // Siberian Mathematical Journal. — 2017. — Vol. 58. — Iss. 3. — P. 467-475.en
dc.identifier.issn374466-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021277265&doi=10.1134%2fS0037446617030107&partnerID=40&md5=5e9d823e7ad9782c22143899fa7ad6df
dc.identifier.otherhttp://arxiv.org/pdf/1610.01067m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102113-
dc.description.abstractA subgroup H of a group G is pronormal if the subgroups H and Hg are conjugate in 〈H,Hg〉 for every g ∈ G. It was conjectured in [1] that a subgroup of a finite simple group having odd index is always pronormal. Recently the authors [2] verified this conjecture for all finite simple groups other than PSLn(q), PSUn(q), E6(q), 2E6(q), where in all cases q is odd and n is not a power of 2, and P Sp2n(q), where q ≡ ±3 (mod 8). However in [3] the authors proved that when q ≡ ±3 (mod 8) and n ≡ 0 (mod 3), the simple symplectic group P Sp2n(q) has a nonpronormal subgroup of odd index, thereby refuted the conjecture on pronormality of subgroups of odd index in finite simple groups. The natural extension of this conjecture is the problem of classifying finite nonabelian simple groups in which every subgroup of odd index is pronormal. In this paper we continue to study this problem for the simple symplectic groups P Sp2n(q) with q ≡ ±3 (mod 8) (if the last condition is not satisfied, then subgroups of odd index are pronormal). We prove that whenever n is not of the form 2m or 2m(22k+1), this group has a nonpronormal subgroup of odd index. If n = 2m, then we show that all subgroups of P Sp2n(q) of odd index are pronormal. The question of pronormality of subgroups of odd index in P Sp2n(q) is still open when n = 2m(22k + 1) and q ≡ ±3 (mod 8). © 2017, Pleiades Publishing, Ltd.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer New York LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSib. Math. J.2
dc.sourceSiberian Mathematical Journalen
dc.subjectFINITE GROUPen
dc.subjectODD INDEXen
dc.subjectPRONORMAL SUBGROUPen
dc.subjectSIMPLE GROUPen
dc.subjectSYMPLECTIC GROUPen
dc.titleOn the pronormality of subgroups of odd index in finite simple symplectic groupsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1134/S0037446617030107-
dc.identifier.scopus85021277265-
local.contributor.employeeKondrat’ev, A.S., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeMaslova, N.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeRevin, D.O., Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russian Federation, Department of Mathematics, University of Science and Technology of China, Hefei, China
local.description.firstpage467-
local.description.lastpage475-
local.issue3-
local.volume58-
dc.identifier.wos000404212100010-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.departmentSobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russian Federation
local.contributor.departmentDepartment of Mathematics, University of Science and Technology of China, Hefei, China
local.identifier.pure1926918-
local.identifier.eid2-s2.0-85021277265-
local.identifier.wosWOS:000404212100010-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85021277265.pdf232,16 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.