Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102057
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKhlopin, D.en
dc.date.accessioned2021-08-31T15:01:34Z-
dc.date.available2021-08-31T15:01:34Z-
dc.date.issued2018-
dc.identifier.citationKhlopin D. Tauberian Theorem for Value Functions / D. Khlopin. — DOI 10.1007/s13235-017-0227-5 // Dynamic Games and Applications. — 2018. — Vol. 8. — Iss. 2. — P. 401-422.en
dc.identifier.issn21530785-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85036660808&doi=10.1007%2fs13235-017-0227-5&partnerID=40&md5=49142de69b60e2059e1999ececbcac05
dc.identifier.otherhttp://arxiv.org/pdf/1607.06067m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102057-
dc.description.abstractFor two-person dynamic zero-sum games (both discrete and continuous settings), we investigate the limit of value functions of finite horizon games with long-run average cost as the time horizon tends to infinity and the limit of value functions of λ-discounted games as the discount tends to zero. We prove that the Dynamic Programming Principle for value functions directly leads to the Tauberian theorem—that the existence of a uniform limit of the value functions for one of the families implies that the other one also uniformly converges to the same limit. No assumptions on strategies are necessary. To this end, we consider a mapping that takes each payoff to the corresponding value function and preserves the sub- and superoptimality principles (the Dynamic Programming Principle). With their aid, we obtain certain inequalities on asymptotics of sub- and supersolutions, which lead to the Tauberian theorem. In particular, we consider the case of differential games without relying on the existence of the saddle point; a very simple stochastic game model is also considered. © 2017, Springer Science+Business Media, LLC.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer New York LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceDyn. Games Appl.2
dc.sourceDynamic Games and Applicationsen
dc.subjectABEL MEANen
dc.subjectCESARO MEANen
dc.subjectDIFFERENTIAL GAMESen
dc.subjectDYNAMIC PROGRAMMING PRINCIPLEen
dc.subjectZERO-SUM GAMESen
dc.titleTauberian Theorem for Value Functionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi35476594-
dc.identifier.doi10.1007/s13235-017-0227-5-
dc.identifier.scopus85036660808-
local.contributor.employeeKhlopin, D., Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 16, S.Kovalevskaja St., Yekaterinburg, 620990, Russian Federation, Chair of Applied Mathematics, Institute of Mathematics and Computer Science, Ural Federal University, 4, Turgeneva St., Yekaterinburg, 620083, Russian Federation
local.description.firstpage401-
local.description.lastpage422-
local.issue2-
local.volume8-
dc.identifier.wos000429834700008-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, 16, S.Kovalevskaja St., Yekaterinburg, 620990, Russian Federation
local.contributor.departmentChair of Applied Mathematics, Institute of Mathematics and Computer Science, Ural Federal University, 4, Turgeneva St., Yekaterinburg, 620083, Russian Federation
local.identifier.pure612f4dab-a4f0-4474-8257-0cdfbc50a0a0uuid
local.identifier.pure7144649-
local.identifier.eid2-s2.0-85036660808-
local.identifier.wosWOS:000429834700008-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85036660808.pdf281,52 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.