Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/102044
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Ustalov, D. | en |
dc.contributor.author | Chernoskutov, M. | en |
dc.contributor.author | Biemann, C. | en |
dc.contributor.author | Panchenko, A. | en |
dc.date.accessioned | 2021-08-31T15:01:30Z | - |
dc.date.available | 2021-08-31T15:01:30Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Fighting with the sparsity of synonymy dictionaries for automatic synset induction / D. Ustalov, M. Chernoskutov, C. Biemann, et al. — DOI 10.1007/978-3-319-73013-4_9 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2018. — Vol. 10716 LNCS. — P. 94-105. | en |
dc.identifier.isbn | 9783319730127 | - |
dc.identifier.issn | 3029743 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039432105&doi=10.1007%2f978-3-319-73013-4_9&partnerID=40&md5=78d2482188210b3b2d94f24b7bafe410 | |
dc.identifier.other | http://arxiv.org/pdf/1708.09234 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/102044 | - |
dc.description.abstract | Graph-based synset induction methods, such as MaxMax and Watset, induce synsets by performing a global clustering of a synonymy graph. However, such methods are sensitive to the structure of the input synonymy graph: sparseness of the input dictionary can substantially reduce the quality of the extracted synsets. In this paper, we propose two different approaches designed to alleviate the incompleteness of the input dictionaries. The first one performs a pre-processing of the graph by adding missing edges, while the second one performs a post-processing by merging similar synset clusters. We evaluate these approaches on two datasets for the Russian language and discuss their impact on the performance of synset induction methods. Finally, we perform an extensive error analysis of each approach and discuss prominent alternative methods for coping with the problem of sparsity of the synonymy dictionaries. © Springer International Publishing AG 2018. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer Verlag | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Lect. Notes Comput. Sci. | 2 |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en |
dc.subject | LEXICAL SEMANTICS | en |
dc.subject | SENSE EMBEDDINGS | en |
dc.subject | SYNONYMS | en |
dc.subject | SYNSET INDUCTION | en |
dc.subject | SYNSET INDUCTION | en |
dc.subject | WORD EMBEDDINGS | en |
dc.subject | WORD SENSE INDUCTION | en |
dc.subject | GRAPHIC METHODS | en |
dc.subject | SEMANTICS | en |
dc.subject | EMBEDDINGS | en |
dc.subject | LEXICAL SEMANTICS | en |
dc.subject | SYNONYMS | en |
dc.subject | SYNSET INDUCTION | en |
dc.subject | WORD SENSE INDUCTIONS | en |
dc.subject | IMAGE ANALYSIS | en |
dc.title | Fighting with the sparsity of synonymy dictionaries for automatic synset induction | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 35500784 | - |
dc.identifier.doi | 10.1007/978-3-319-73013-4_9 | - |
dc.identifier.scopus | 85039432105 | - |
local.contributor.employee | Ustalov, D., Ural Federal University, Yekaterinburg, Russian Federation, Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation | |
local.contributor.employee | Chernoskutov, M., Ural Federal University, Yekaterinburg, Russian Federation, Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation | |
local.contributor.employee | Biemann, C., Universität Hamburg, Hamburg, Germany | |
local.contributor.employee | Panchenko, A., Universität Hamburg, Hamburg, Germany | |
local.description.firstpage | 94 | - |
local.description.lastpage | 105 | - |
local.volume | 10716 LNCS | - |
dc.identifier.wos | 000441461800009 | - |
local.contributor.department | Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation | |
local.contributor.department | Universität Hamburg, Hamburg, Germany | |
local.identifier.pure | 4bfa9646-fdbe-4a3f-9d83-f4a030afbbcc | uuid |
local.identifier.pure | 6253170 | - |
local.identifier.eid | 2-s2.0-85039432105 | - |
local.identifier.wos | WOS:000441461800009 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85039432105.pdf | 195,53 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.