Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102044
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorUstalov, D.en
dc.contributor.authorChernoskutov, M.en
dc.contributor.authorBiemann, C.en
dc.contributor.authorPanchenko, A.en
dc.date.accessioned2021-08-31T15:01:30Z-
dc.date.available2021-08-31T15:01:30Z-
dc.date.issued2018-
dc.identifier.citationFighting with the sparsity of synonymy dictionaries for automatic synset induction / D. Ustalov, M. Chernoskutov, C. Biemann, et al. — DOI 10.1007/978-3-319-73013-4_9 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2018. — Vol. 10716 LNCS. — P. 94-105.en
dc.identifier.isbn9783319730127-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85039432105&doi=10.1007%2f978-3-319-73013-4_9&partnerID=40&md5=78d2482188210b3b2d94f24b7bafe410
dc.identifier.otherhttp://arxiv.org/pdf/1708.09234m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102044-
dc.description.abstractGraph-based synset induction methods, such as MaxMax and Watset, induce synsets by performing a global clustering of a synonymy graph. However, such methods are sensitive to the structure of the input synonymy graph: sparseness of the input dictionary can substantially reduce the quality of the extracted synsets. In this paper, we propose two different approaches designed to alleviate the incompleteness of the input dictionaries. The first one performs a pre-processing of the graph by adding missing edges, while the second one performs a post-processing by merging similar synset clusters. We evaluate these approaches on two datasets for the Russian language and discuss their impact on the performance of synset induction methods. Finally, we perform an extensive error analysis of each approach and discuss prominent alternative methods for coping with the problem of sparsity of the synonymy dictionaries. © Springer International Publishing AG 2018.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectLEXICAL SEMANTICSen
dc.subjectSENSE EMBEDDINGSen
dc.subjectSYNONYMSen
dc.subjectSYNSET INDUCTIONen
dc.subjectSYNSET INDUCTIONen
dc.subjectWORD EMBEDDINGSen
dc.subjectWORD SENSE INDUCTIONen
dc.subjectGRAPHIC METHODSen
dc.subjectSEMANTICSen
dc.subjectEMBEDDINGSen
dc.subjectLEXICAL SEMANTICSen
dc.subjectSYNONYMSen
dc.subjectSYNSET INDUCTIONen
dc.subjectWORD SENSE INDUCTIONSen
dc.subjectIMAGE ANALYSISen
dc.titleFighting with the sparsity of synonymy dictionaries for automatic synset inductionen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi35500784-
dc.identifier.doi10.1007/978-3-319-73013-4_9-
dc.identifier.scopus85039432105-
local.contributor.employeeUstalov, D., Ural Federal University, Yekaterinburg, Russian Federation, Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.contributor.employeeChernoskutov, M., Ural Federal University, Yekaterinburg, Russian Federation, Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.contributor.employeeBiemann, C., Universität Hamburg, Hamburg, Germany
local.contributor.employeePanchenko, A., Universität Hamburg, Hamburg, Germany
local.description.firstpage94-
local.description.lastpage105-
local.volume10716 LNCS-
dc.identifier.wos000441461800009-
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federation
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russian Federation
local.contributor.departmentUniversität Hamburg, Hamburg, Germany
local.identifier.pure4bfa9646-fdbe-4a3f-9d83-f4a030afbbccuuid
local.identifier.pure6253170-
local.identifier.eid2-s2.0-85039432105-
local.identifier.wosWOS:000441461800009-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85039432105.pdf195,53 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.