Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/102041
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIskakov, S.en
dc.contributor.authorDanilov, M.en
dc.date.accessioned2021-08-31T15:01:29Z-
dc.date.available2021-08-31T15:01:29Z-
dc.date.issued2018-
dc.identifier.citationIskakov S. Exact diagonalization library for quantum electron models / S. Iskakov, M. Danilov. — DOI 10.1016/j.cpc.2017.12.016 // Computer Physics Communications. — 2018. — Vol. 225. — P. 128-139.en
dc.identifier.issn104655-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040101671&doi=10.1016%2fj.cpc.2017.12.016&partnerID=40&md5=f8c6103cf2eb9420404c6679bb0daada
dc.identifier.otherhttp://arxiv.org/pdf/1701.05645m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/102041-
dc.description.abstractWe present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin–spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model. Program summary: Program Title: EDLib Program Files doi: http://dx.doi.org/10.17632/633698b4g2.1 Licensing provisions: MIT Programming language: C++, MPI External routines: ARPACK-NG, ALPSCore library (Gaenko et al., 2016) Nature of problem: The finite Hubbard and Anderson models play an essential role in the description of strongly correlated many-particle systems. These models consist of a small number of localized orbitals with Coulomb interaction between electrons and (in case of the Anderson model) non-interacting bath energy levels. The finite Hubbard cluster can be used to study molecular magnets, such as Mn12, Fe4, Mn4, and V15, which are currently of interest due to their potential for use in novel technologies such as molecular electronics, solar energy harvesting, thermoelectrics, sensing, and other applications (Sakon et al., 2004; Accorsi et al., 2006; Friedman et al., 1996) [1–3]. The Anderson model can be used to study impurities adsorbed on surfaces (Iskakov et al., 2015) [4] and appears as an impurity model in the Dynamic Mean Field Theory (Georges et al., 1996) [5]. Solution method: The OpenMP and MPI parallelized versions of the finite temperature Lanczos diagonalization method are used to diagonalize Hamiltonian matrix and to compute observables. © 2017 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceComput Phys Commun2
dc.sourceComputer Physics Communicationsen
dc.subjectANDERSON IMPURITY MODELen
dc.subjectEXACT DIAGONALIZATIONen
dc.subjectHUBBARD MODELen
dc.subjectMANY-BODY PHYSICSen
dc.subjectALUMINUMen
dc.subjectAPPLICATION PROGRAMMING INTERFACES (API)en
dc.subjectENERGY HARVESTINGen
dc.subjectHAMILTONIANSen
dc.subjectHIGH LEVEL LANGUAGESen
dc.subjectHUBBARD MODELen
dc.subjectIMPURITIESen
dc.subjectMEAN FIELD THEORYen
dc.subjectSOLAR ENERGYen
dc.subjectANDERSON IMPURITY MODELen
dc.subjectC++ TEMPLATE LIBRARYen
dc.subjectDIAGONALIZATION METHODen
dc.subjectDYNAMIC MEAN FIELD THEORIESen
dc.subjectEXACT DIAGONALIZATIONen
dc.subjectMANY BODYen
dc.subjectMANY-PARTICLE SYSTEMSen
dc.subjectSPIN-SPIN CORRELATION FUNCTIONSen
dc.subjectC++ (PROGRAMMING LANGUAGE)en
dc.titleExact diagonalization library for quantum electron modelsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi35539901-
dc.identifier.doi10.1016/j.cpc.2017.12.016-
dc.identifier.scopus85040101671-
local.contributor.employeeIskakov, S., Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States, Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Str.19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeDanilov, M., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Str.19, Yekaterinburg, 620002, Russian Federation, Institute of Theoretical Physics, University of Hamburg, Jungiusstraße 9, Hamburg, 20355, Germany
local.description.firstpage128-
local.description.lastpage139-
local.volume225-
dc.identifier.wos000428006400010-
local.contributor.departmentDepartment of Physics, University of Michigan, Ann Arbor, MI 48109, United States
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Str.19, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentInstitute of Theoretical Physics, University of Hamburg, Jungiusstraße 9, Hamburg, 20355, Germany
local.identifier.pure26b40bea-d5b4-46b5-84bb-785338baf267uuid
local.identifier.pure6513056-
local.identifier.eid2-s2.0-85040101671-
local.identifier.wosWOS:000428006400010-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85040101671.pdf1,84 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.