Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101945
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorWong, C. H.en
dc.contributor.authorBuntov, E. A.en
dc.contributor.authorZatsepin, A. F.en
dc.contributor.authorLortz, R.en
dc.date.accessioned2021-08-31T15:00:49Z-
dc.date.available2021-08-31T15:00:49Z-
dc.date.issued2018-
dc.identifier.citationElectron–electron interactions of the multi-Cooper-pairs in the 1D limit and their role in the formation of global phase coherence in quasi-one-dimensional superconducting nanowire arrays / C. H. Wong, E. A. Buntov, A. F. Zatsepin, et al. — DOI 10.1016/j.physc.2018.08.003 // Physica C: Superconductivity and its Applications. — 2018. — Vol. 553. — P. 33-37.en
dc.identifier.issn9214534-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85051670935&doi=10.1016%2fj.physc.2018.08.003&partnerID=40&md5=4f847c1b03eba20e0985ade422b2d9cd
dc.identifier.otherhttp://arxiv.org/pdf/1807.00611m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101945-
dc.description.abstractNanostructuring of superconducting materials to form dense arrays of thin parallel nanowires with significantly large transverse Josephson coupling has proven to be an effective way to increase the upper critical field of superconducting elements by as much as two orders of magnitude as compared to the corresponding bulk materials and, in addition, may cause considerable enhancements in their critical temperatures. Such materials have been realized in the linear pores of mesoporous substrates or exist intrinsically in the form of various quasi-1D crystalline materials. The transverse coupling between the superconducting nanowires is determined by the size-dependent coherence length ξ0. In order to obtain ξ0 over the Langer–Ambegaokar–McCumber–Halperin (LAMH) theory, extensive experimental fitting parameters have been required over the last 40 years. We propose a novel Monte Carlo algorithm for determining ξ0 of the multi-Cooper pair system in the 1D limit. The concepts of uncertainty principle, Pauli-limit, spin flip mechanism, electrostatic interaction, thermal perturbation and co-rotating of electrons are considered in the model. We use Pb nanowires as an example to monitor the size effect of ξ0 as a result of the modified electron-electron interaction without the need for experimental fitting parameters. We investigate how the coherence length determines the transverse coupling of nanowires in dense arrays. This determines whether or not a global phase-coherent state with zero resistance can be formed in such arrays. Our Monte Carlo results are in very good agreement with experimental data from various types of superconducting nanowire arrays. © 2018 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys C Supercond Appl2
dc.sourcePhysica C: Superconductivity and its Applicationsen
dc.subject1D SUPERCONDUCTIVITYen
dc.subjectMONTE CARLO METHODen
dc.subjectPHASE FLUCTUATIONSen
dc.subjectCRYSTALLINE MATERIALSen
dc.subjectELECTRON-ELECTRON INTERACTIONSen
dc.subjectELECTRONSen
dc.subjectMESOPOROUS MATERIALSen
dc.subjectNANOWIRESen
dc.subjectORGANIC SUPERCONDUCTING MATERIALSen
dc.subject1D SUPERCONDUCTIVITYen
dc.subjectGLOBAL PHASE COHERENCESen
dc.subjectMONTE CARLO ALGORITHMSen
dc.subjectPHASE FLUCTUATIONen
dc.subjectSUPERCONDUCTING ELEMENTSen
dc.subjectSUPERCONDUCTING NANOWIREen
dc.subjectSUPERCONDUCTING NANOWIRE ARRAYSen
dc.subjectUNCERTAINTY PRINCIPLESen
dc.subjectMONTE CARLO METHODSen
dc.titleElectron–electron interactions of the multi-Cooper-pairs in the 1D limit and their role in the formation of global phase coherence in quasi-one-dimensional superconducting nanowire arraysen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi35726719-
dc.identifier.doi10.1016/j.physc.2018.08.003-
dc.identifier.scopus85051670935-
local.contributor.employeeWong, C.H., Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeBuntov, E.A., Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeZatsepin, A.F., Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeLortz, R., Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
local.description.firstpage33-
local.description.lastpage37-
local.volume553-
dc.identifier.wos000444853500007-
local.contributor.departmentInstitute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.departmentDepartment of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
local.identifier.pure10ea82bf-ada2-404b-8b17-aa5026be3165uuid
local.identifier.pure7759827-
local.identifier.eid2-s2.0-85051670935-
local.identifier.wosWOS:000444853500007-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85051670935.pdf618,74 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.