Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101929
Title: Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code calculations
Authors: Mostafa, A. M. A.
Zakaly, H. M. H.
Pyshkina, M.
Issa, S. A. M.
Tekin, H. O.
Sidek, H. A. A.
Matori, K. A.
Zaid, M. H. M.
Issue Date: 2020
Publisher: Elsevier Editora Ltda
Citation: Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code calculations / A. M. A. Mostafa, H. M. H. Zakaly, M. Pyshkina, et al. — DOI 10.1016/j.jmrt.2020.08.077 // Journal of Materials Research and Technology. — 2020. — Vol. 9. — Iss. 6. — P. 12335-12345.
Abstract: Highly efficient gamma shielding of BZBB glasses with various Bi2O3 concentrations in the xBi2O3-30B2O3-(65-x)ZnO-5BaO, (5 ≤ x ≤ 25 mol%) were evaluated for their radiation shielding properties. The m results have been evaluated via the NISTXCOM database and simulated via FLUKA code. The simulation values by Monte Carlo code (FLUKA) have been shown to converge and correlate with XCOM values. Shielding properties like HVL, MFP, Zeff, EBF, and EABF values have been computed. The values observed that μm and Zeff increase with increasing Bi2O3. 47.09, 48.91, 50.73, 52.54 and 54.36 (cm2/g) are the μm values for BZBB1, BZBB2, BZBB3, BZBB4 and BZBB5 glasses at 15 keV. Also, the μm values decrease with increasing photon energy for all glass samples. Moreover, BZBB5 sample had the lowest HVL, MFP, EBF, and EABF values. That indicates to the addition of Bi2O3 improves the radiation shielding properties of BZBB glasses. The obtained results were compared with the most commonly shielding materials such as lead and concretes. It was concluded that the improved BZBB glasses with the addition of Bi2O3 showed excellent shielding properties comparing with shielding materials. These results could be highly beneficial for fields such as medical treatment facilities. © 2020 The Authors.
Keywords: BISMUTH
BORATE GLASSES
FLUKA CODE
SHIELDING PROPERTIES
BARIUM COMPOUNDS
BISMUTH COMPOUNDS
GLASS
II-VI SEMICONDUCTORS
MONTE CARLO METHODS
MULTIOBJECTIVE OPTIMIZATION
OXIDE MINERALS
ZINC OXIDE
GAMMA SHIELDING
GLASS SAMPLES
MEDICAL TREATMENT
MONTE CARLO CODES
PHOTON ENERGY
SHIELDING MATERIALS
SHIELDING PERFORMANCE
SHIELDING PROPERTIES
RADIATION SHIELDING
URI: http://hdl.handle.net/10995/101929
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85094821719
PURE ID: 20544472
aa4c83a4-39fa-4c28-aea4-af2c7a952a42
ISSN: 22387854
DOI: 10.1016/j.jmrt.2020.08.077
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85094821719.pdf2,94 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.