Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101920
Title: Nucleation instability in supercooled Cu-Zr-Al glass-forming liquids
Authors: Ryltsev, R. E.
Klumov, B. A.
Chtchelkatchev, N. M.
Shunyaev, K. Y.
Issue Date: 2018
Publisher: American Institute of Physics Inc.
Citation: Nucleation instability in supercooled Cu-Zr-Al glass-forming liquids / R. E. Ryltsev, B. A. Klumov, N. M. Chtchelkatchev, et al. — DOI 10.1063/1.5054631 // Journal of Chemical Physics. — 2018. — Vol. 149. — Iss. 16. — 164502.
Abstract: Few general models representing certain classes of real glass-forming systems play a special role in computer simulations of supercooled liquid and glasses. Recently, it was shown that one of the most widely used model glassformers - the Kob-Andersen binary mixture - crystalizes in quite lengthy molecular dynamics simulations, and moreover, it is in fact a very poor glassformer at large system sizes. Thus, our understanding of crystallization stability of model glassformers is far from complete due to the fact that relatively small system sizes and short time scales have been considered so far. Here we address this issue for two embedded atom models intensively used last years in numerical studies of Cu-Zr-(Al) bulk metallic glasses. Exploring the structural evolution of Cu64.5Zr35.5 and Cu46Zr46Al8 alloys at continuous cooling and isothermal annealing, we observe that both systems nucleate in sufficiently lengthy simulations, although critical nucleation time for the latter is an order of magnitude higher than that for the former. We show that Cu64.5Zr35.5 is actually unstable to crystallization for large system sizes (N > 20 000). Both systems crystallize with the formation of tetrahedrally close packed Laves phases of different types. We argue that nucleation instability of the simulated Cu64.5Zr35.5 alloy is due to the fact that its composition is very close to that for the stable Cu2Zr compound with a C15 Laves phase structure. © 2018 Author(s).
Keywords: ALUMINUM ALLOYS
BINARY ALLOYS
BINARY MIXTURES
CONTINUOUS TIME SYSTEMS
COOLING SYSTEMS
GLASS
ISOTHERMAL ANNEALING
LIQUIDS
METALLIC GLASS
MOLECULAR DYNAMICS
NUCLEATION
STABILITY
SUPERCOOLING
TERNARY ALLOYS
ZIRCALOY
BULK METALLIC GLASS
CRYSTALLIZATION STABILITY
EMBEDDED ATOM MODELS
GLASS-FORMING LIQUID
GLASS-FORMING SYSTEMS
MOLECULAR DYNAMICS SIMULATIONS
STRUCTURAL EVOLUTION
SUPERCOOLED LIQUIDS
COPPER ALLOYS
URI: http://hdl.handle.net/10995/101920
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85055911960
PURE ID: 8173351
6eecc0d4-2763-4f39-adf8-6da593c7d631
ISSN: 219606
DOI: 10.1063/1.5054631
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85055911960.pdf5,82 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.