Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101915
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIakovlev, I. A.en
dc.contributor.authorSotnikov, O. M.en
dc.contributor.authorMazurenko, V. V.en
dc.date.accessioned2021-08-31T15:00:36Z-
dc.date.available2021-08-31T15:00:36Z-
dc.date.issued2018-
dc.identifier.citationIakovlev I. A. Supervised learning approach for recognizing magnetic skyrmion phases / I. A. Iakovlev, O. M. Sotnikov, V. V. Mazurenko. — DOI 10.1103/PhysRevB.98.174411 // Physical Review B. — 2018. — Vol. 98. — Iss. 17. — 174411.en
dc.identifier.issn24699950-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85056259097&doi=10.1103%2fPhysRevB.98.174411&partnerID=40&md5=882bb6fb35dc82141219d2db597d8126
dc.identifier.otherhttp://arxiv.org/pdf/1803.06682m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101915-
dc.description.abstractWe propose and apply simple machine learning approaches for recognition and classification of complex noncollinear magnetic structures in two-dimensional materials. The first approach is based on the implementation of the single-hidden-layer neural network that only relies on the z projections of the spins. In this setup, one needs a limited set of magnetic configurations to distinguish ferromagnetic, skyrmion, and spin spiral phases, as well as their different combinations in transitional areas of the phase diagram. The network trained on the configurations for the square-lattice Heisenberg model with Dzyaloshinskii-Moriya interaction can classify the magnetic structures obtained from Monte Carlo calculations for a triangular lattice and vice versa. The second approach we apply, a minimum distance method, performs a fast and cheap classification in cases when a particular configuration is to be assigned to only one magnetic phase. The methods we propose are also easy to use for analysis of the numerous experimental data collected with spin-polarized scanning tunneling microscopy and Lorentz transmission electron microscopy experiments. © 2018 American Physical Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Physical Societyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys. Rev. B2
dc.sourcePhysical Review Ben
dc.titleSupervised learning approach for recognizing magnetic skyrmion phasesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi38637674-
dc.identifier.doi10.1103/PhysRevB.98.174411-
dc.identifier.scopus85056259097-
local.contributor.employeeIakovlev, I.A., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeSotnikov, O.M., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeMazurenko, V.V., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.issue17-
local.volume98-
dc.identifier.wos000449385800002-
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation
local.identifier.puree6febfd5-f2cf-4ec8-9579-54d644d3f70cuuid
local.identifier.pure8328828-
local.description.order174411-
local.identifier.eid2-s2.0-85056259097-
local.identifier.wosWOS:000449385800002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85056259097.pdf8,21 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.