Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101915
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Iakovlev, I. A. | en |
dc.contributor.author | Sotnikov, O. M. | en |
dc.contributor.author | Mazurenko, V. V. | en |
dc.date.accessioned | 2021-08-31T15:00:36Z | - |
dc.date.available | 2021-08-31T15:00:36Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Iakovlev I. A. Supervised learning approach for recognizing magnetic skyrmion phases / I. A. Iakovlev, O. M. Sotnikov, V. V. Mazurenko. — DOI 10.1103/PhysRevB.98.174411 // Physical Review B. — 2018. — Vol. 98. — Iss. 17. — 174411. | en |
dc.identifier.issn | 24699950 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056259097&doi=10.1103%2fPhysRevB.98.174411&partnerID=40&md5=882bb6fb35dc82141219d2db597d8126 | |
dc.identifier.other | http://arxiv.org/pdf/1803.06682 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101915 | - |
dc.description.abstract | We propose and apply simple machine learning approaches for recognition and classification of complex noncollinear magnetic structures in two-dimensional materials. The first approach is based on the implementation of the single-hidden-layer neural network that only relies on the z projections of the spins. In this setup, one needs a limited set of magnetic configurations to distinguish ferromagnetic, skyrmion, and spin spiral phases, as well as their different combinations in transitional areas of the phase diagram. The network trained on the configurations for the square-lattice Heisenberg model with Dzyaloshinskii-Moriya interaction can classify the magnetic structures obtained from Monte Carlo calculations for a triangular lattice and vice versa. The second approach we apply, a minimum distance method, performs a fast and cheap classification in cases when a particular configuration is to be assigned to only one magnetic phase. The methods we propose are also easy to use for analysis of the numerous experimental data collected with spin-polarized scanning tunneling microscopy and Lorentz transmission electron microscopy experiments. © 2018 American Physical Society. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Phys. Rev. B | 2 |
dc.source | Physical Review B | en |
dc.title | Supervised learning approach for recognizing magnetic skyrmion phases | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 38637674 | - |
dc.identifier.doi | 10.1103/PhysRevB.98.174411 | - |
dc.identifier.scopus | 85056259097 | - |
local.contributor.employee | Iakovlev, I.A., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Sotnikov, O.M., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation | |
local.contributor.employee | Mazurenko, V.V., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation | |
local.issue | 17 | - |
local.volume | 98 | - |
dc.identifier.wos | 000449385800002 | - |
local.contributor.department | Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg, 620002, Russian Federation | |
local.identifier.pure | e6febfd5-f2cf-4ec8-9579-54d644d3f70c | uuid |
local.identifier.pure | 8328828 | - |
local.description.order | 174411 | - |
local.identifier.eid | 2-s2.0-85056259097 | - |
local.identifier.wos | WOS:000449385800002 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85056259097.pdf | 8,21 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.