Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuhammed, P. A. A.en
dc.date.accessioned2021-08-31T15:00:26Z-
dc.date.available2021-08-31T15:00:26Z-
dc.date.issued2018-
dc.identifier.citationMuhammed P. A. A. Cross-connections of linear transformation semigroups / P. A. A. Muhammed. — DOI 10.1007/s00233-018-9942-5 // Semigroup Forum. — 2018. — Vol. 97. — Iss. 3. — P. 457-470.en
dc.identifier.issn371912-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057724512&doi=10.1007%2fs00233-018-9942-5&partnerID=40&md5=50eb9dde820e7da804f5096f9196c5ef
dc.identifier.otherhttp://arxiv.org/pdf/1701.06098m
dc.identifier.urihttp://hdl.handle.net/10995/101899-
dc.description.abstractCross-connection theory developed by Nambooripad is the construction of a regular semigroup from its principal left (right) ideals using categories. We use the cross-connection theory to study the structure of the semigroup Sing(V) of singular linear transformations on an arbitrary vector space V over a field K. There is an inbuilt notion of duality in the cross-connection theory, and we observe that it coincides with the conventional algebraic duality of vector spaces. We describe various cross-connections between these categories and show that although there are many cross-connections, upto isomorphism, we have only one semigroup arising from these categories. But if we restrict the categories suitably, we can construct some interesting subsemigroups of the variants of the linear transformation semigroup. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer New York LLCen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSemigroup Forum2
dc.sourceSemigroup Forumen
dc.subjectCROSS-CONNECTIONSen
dc.subjectDUALen
dc.subjectLINEAR TRANSFORMATION SEMIGROUPen
dc.subjectNORMAL CATEGORYen
dc.subjectREGULAR SEMIGROUPen
dc.subjectVARIANTen
dc.titleCross-connections of linear transformation semigroupsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s00233-018-9942-5-
dc.identifier.scopus85057724512-
local.contributor.employeeMuhammed, P.A.A., Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation, School of Mathematics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695016, India
local.description.firstpage457-
local.description.lastpage470-
local.issue3-
local.volume97-
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, Lenina 51, Ekaterinburg, 620000, Russian Federation
local.contributor.departmentSchool of Mathematics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695016, India
local.identifier.pure8431980-
local.identifier.eid2-s2.0-85057724512-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85057724512.pdf145,84 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.