Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101884
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKovaleva, E. G.en
dc.contributor.authorMolochnikov, L. S.en
dc.contributor.authorTambasova, D.en
dc.contributor.authorMarek, A.en
dc.contributor.authorChestnut, M.en
dc.contributor.authorOsipova, V. A.en
dc.contributor.authorAntonov, D. O.en
dc.contributor.authorKirilyuk, I. A.en
dc.contributor.authorSmirnov, A. I.en
dc.date.accessioned2021-08-31T15:00:22Z-
dc.date.available2021-08-31T15:00:22Z-
dc.date.issued2020-
dc.identifier.citationElectrostatic properties of inner nanopore surfaces of anodic aluminum oxide membranes upon high temperature annealing revealed by EPR of pH-sensitive spin probes and labels / E. G. Kovaleva, L. S. Molochnikov, D. Tambasova, et al. — DOI 10.1016/j.memsci.2020.118084 // Journal of Membrane Science. — 2020. — Vol. 604. — 118084.en
dc.identifier.issn3767388-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082725239&doi=10.1016%2fj.memsci.2020.118084&partnerID=40&md5=f1dca3505eec388ad8a582396a83c7eb
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101884-
dc.description.abstractAnodic aluminum oxide (AAO) membranes are versatile nanomaterials that combine the chemically stable and mechanically robust properties of ceramics with homogeneous nanoscale organization that can be tuned to desirable pore diameters and lengths. The AAO substrates feature high surface area that is readily accessible to large and small molecules, making these nanostructures uniquely suited for many possible applications. Examples include templated self-assembly of macroscopically aligned biological membranes and substrates for heterogeneous catalysis. For further development of such applications, one would like to characterize and tune the electrostatic properties of the inner pore surface as well as the local acidity within the nanochannels. Here, we employed electron paramagnetic resonance (EPR) spectroscopy of a small molecule – ionizable nitroxide – as a reporter of the average local acidity in the nanochannels and the local electrostatic potential in the immediate vicinity of the pore surface. The former was achieved by measuring EPR spectra of this molecular probe diffusing in an aqueous phase confined in the AAO nanochannels while for the latter the nitroxide was covalently attached to the hydroxyl group of the alumina surface. We show that the local acidity within the nanochannels is increased by as much as ≈1.48 pH units vs. the pH of bulk solution by decreasing the pore diameter down to ca. 31 nm. Furthermore, the positive surface charge of the as-prepared AAO could be decreased and even switched to a negative surface charge upon annealing the membranes first to 700 °C and then to 1200 °C. For as-prepared AAO, the local electrostatic potential reaches ψ= (163 ± 5) mV for the nitroxide label covalently attached to AAO and located about 0.5 nm away from the surface. Overall, we demonstrate that the acid-based properties of the aqueous volume confined by the AAO nanopores pores can be tuned by either changing the pore diameter from ca. 71 to 31 nm or by thermal annealing to switch the sign of the surface charge. These observations provide a simple and robust means to tailor these versatile high-surface-area nanomaterials for specific applications that depend on acid-base equilibria. © 2020 Elsevier B.V.en
dc.description.sponsorshipE.G.K., L.S.M., D.P.T. acknowledge the financial support of the Program 211 of the Government of the Russian Federation no. 02.A03.21.0006 , RFBR grant 18-29-12129mk , and the State Task from the Ministry of Science and Higher Education of the Russian Federation no. 0836-2020-0058 . Fabrication and SEM characterization of AAO, least-squares fitting of EPR spectra and the final preparation of the manuscript were supported by U.S. DOE Contract DE-FG02-02ER15354 to AIS. IAK acknowledges support from the Ministry of Science and Higher Education of the Russian Federation grant No. 14.W03.31.0034 for the nitroxide synthesis. NR-dimethylamine derivative has been synthesized in the context of State Task of the Institute of Organic Synthesis named after Academician I. Ya. Postovsky of the Ural Branch of the Russian Academy of Sciences (Pr. AAAA- A19-119012490006-1 ).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Membr. Sci.2
dc.sourceJournal of Membrane Scienceen
dc.subjectANODIC ALUMINUM OXIDEen
dc.subjectELECTRON PARAMAGNETIC RESONANCEen
dc.subjectNANOPORESen
dc.subjectSPIN LABELINGen
dc.subjectSURFACE ELECTROSTATIC POTENTIALen
dc.subjectALUMINAen
dc.subjectALUMINUM OXIDEen
dc.subjectANNEALINGen
dc.subjectANODIC OXIDATIONen
dc.subjectBIOLOGICAL MEMBRANESen
dc.subjectCATALYSISen
dc.subjectCYTOLOGYen
dc.subjectELECTRON RESONANCEen
dc.subjectELECTROSTATICSen
dc.subjectMOLECULESen
dc.subjectNANOPORESen
dc.subjectNANOSTRUCTURED MATERIALSen
dc.subjectPARAMAGNETIC RESONANCEen
dc.subjectPARAMAGNETISMen
dc.subjectPROBESen
dc.subjectSUBSTRATESen
dc.subjectSURFACE CHARGEen
dc.subjectANODIC ALUMINUM OXIDEen
dc.subjectANODIC ALUMINUM OXIDE MEMBRANESen
dc.subjectELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPYen
dc.subjectELECTROSTATIC PROPERTIESen
dc.subjectHIGH-TEMPERATURE ANNEALINGen
dc.subjectSPIN LABELINGen
dc.subjectSURFACE ELECTROSTATIC POTENTIALen
dc.subjectTEMPLATED SELF ASSEMBLIESen
dc.subjectELECTRON SPIN RESONANCE SPECTROSCOPYen
dc.subjectALUMINUM OXIDEen
dc.subjectHYDROXYL GROUPen
dc.subjectNANOCHANNELen
dc.subjectNITROXIDEen
dc.subjectSPIN LABELen
dc.subjectACIDITYen
dc.subjectAQUEOUS SOLUTIONen
dc.subjectARTICLEen
dc.subjectBIOMEMBRANEen
dc.subjectELECTRON SPIN RESONANCEen
dc.subjectHIGH TEMPERATUREen
dc.subjectPHen
dc.subjectPORE SIZEen
dc.subjectPORE VOLUMEen
dc.subjectPRIORITY JOURNALen
dc.subjectSPIN LABELINGen
dc.subjectSTATIC ELECTRICITYen
dc.subjectSURFACE AREAen
dc.subjectSURFACE CHARGEen
dc.subjectSURFACE PROPERTYen
dc.subjectALUMINUM OXIDEen
dc.subjectANNEALINGen
dc.subjectCATALYSTSen
dc.subjectCYTOLOGYen
dc.subjectELECTROSTATICSen
dc.subjectMOLECULESen
dc.titleElectrostatic properties of inner nanopore surfaces of anodic aluminum oxide membranes upon high temperature annealing revealed by EPR of pH-sensitive spin probes and labelsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.memsci.2020.118084-
dc.identifier.scopus85082725239-
local.contributor.employeeKovaleva, E.G., Ural Federal University Named After the First President of Russia B N Yeltsin, Institute of Chemical Engineering, Mira St., 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeMolochnikov, L.S., Department of Chemistry, Ural State Forest Engineering University, Siberian Highway, 37, Yekaterinburg, 620100, Russian Federation
local.contributor.employeeTambasova, D., Ural Federal University Named After the First President of Russia B N Yeltsin, Institute of Chemical Engineering, Mira St., 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeMarek, A., Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
local.contributor.employeeChestnut, M., Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
local.contributor.employeeOsipova, V.A., Laboratory of Organic Materials, I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Akademicheskaya / S. Kovalevskoi, 22/20, Ekaterinburg, 620990, Russian Federation
local.contributor.employeeAntonov, D.O., Ural Federal University Named After the First President of Russia B N Yeltsin, Institute of Chemical Engineering, Mira St., 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeKirilyuk, I.A., Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrent'ev Av. 9, Novosibirsk, 630090, Russian Federation
local.contributor.employeeSmirnov, A.I., Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
local.volume604-
local.contributor.departmentUral Federal University Named After the First President of Russia B N Yeltsin, Institute of Chemical Engineering, Mira St., 19, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentDepartment of Chemistry, Ural State Forest Engineering University, Siberian Highway, 37, Yekaterinburg, 620100, Russian Federation
local.contributor.departmentDepartment of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
local.contributor.departmentLaboratory of Organic Materials, I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Akademicheskaya / S. Kovalevskoi, 22/20, Ekaterinburg, 620990, Russian Federation
local.contributor.departmentInstitute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrent'ev Av. 9, Novosibirsk, 630090, Russian Federation
local.identifier.pure12654702-
local.identifier.pure198c9210-811d-4fdf-8aff-f5217eada03buuid
local.description.order118084-
local.identifier.eid2-s2.0-85082725239-
local.fund.rffi18-29-12129-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85082725239.pdf1,17 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.