Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101804
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Alexandrov, D. V. | en |
dc.contributor.author | Nizovtseva, I. G. | en |
dc.date.accessioned | 2021-08-31T14:59:55Z | - |
dc.date.available | 2021-08-31T14:59:55Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Alexandrov D. V. On the theory of crystal growth in metastable systems with biomedical applications: Protein and insulin crystallization / D. V. Alexandrov, I. G. Nizovtseva. — DOI 10.1098/rsta.2018.0214 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2019. — Vol. 377. — Iss. 2143. — 20180214. | en |
dc.identifier.issn | 1364503X | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062411968&doi=10.1098%2frsta.2018.0214&partnerID=40&md5=9d47c09bf1b8b81cc67b089b18b7728b | |
dc.identifier.other | https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0214 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101804 | - |
dc.description.abstract | A generalized theory of nucleation and growth of crystals in a metastable (supercooled or supersaturated) liquid is developed taking into account two principal effects: The diffusion mechanism of the particle-size distribution function in the space of particle radii and the unsteady-state growth rates of individual crystals induced by fluctuations in external temperature or concentration field. A system of the Fokker-Planck and balance integro-differential equations is formulated and analytically solved in a parametric form for arbitrary nucleation kinetics and arbitrary growth rates of individual crystals. The particle-size distribution function and system metastability are found in an explicit form. The Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetic mechanisms, as well as the unsteady-state growth rates of nuclei (Alexandrov & Alexandrova 2019 Phil. Trans. R. Soc. A 377, 20180209 (doi:10.1098/rsta.2018.0209)), are considered as special cases. Some potential biomedical applications of the present theory for crystal growth from supersaturated solutions are discussed. The theory is compared with experimental data on protein and insulin crystallization (growth dynamics of the proteins lysozyme and canavalin as well as of bovine and porcine insulin is considered). The hat-shaped particle-size distribution functions for lysozyme and canavalin crystals as well as for bovine and porcine insulin are found. This article is part of the theme issue 'Heterogeneous materials: Metastable and non-ergodic internal structures'. ©2019 The Author(s)Published by the Royal Society. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Royal Society Publishing | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. | 2 |
dc.source | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences | en |
dc.subject | CRYSTAL GROWTH | en |
dc.subject | METASTABLE LIQUID | en |
dc.subject | NUCLEATION | en |
dc.subject | PHASE TRANSFORMATION | en |
dc.subject | CRYSTAL GROWTH | en |
dc.subject | DISTRIBUTION FUNCTIONS | en |
dc.subject | ENZYMES | en |
dc.subject | INSULIN | en |
dc.subject | INTEGRODIFFERENTIAL EQUATIONS | en |
dc.subject | LIGHT TRANSMISSION | en |
dc.subject | MAMMALS | en |
dc.subject | MEDICAL APPLICATIONS | en |
dc.subject | NUCLEATION | en |
dc.subject | PARTICLE SIZE | en |
dc.subject | PARTICLE SIZE ANALYSIS | en |
dc.subject | PHASE TRANSITIONS | en |
dc.subject | SIZE DISTRIBUTION | en |
dc.subject | BIOMEDICAL APPLICATIONS | en |
dc.subject | CONCENTRATION FIELDS | en |
dc.subject | EXTERNAL TEMPERATURE | en |
dc.subject | HETEROGENEOUS MATERIALS | en |
dc.subject | METASTABLE LIQUID | en |
dc.subject | NUCLEATION AND GROWTH | en |
dc.subject | SUPERSATURATED SOLUTIONS | en |
dc.subject | THEORY OF CRYSTAL GROWTH | en |
dc.subject | GROWTH KINETICS | en |
dc.subject | INSULIN | en |
dc.subject | ANIMAL | en |
dc.subject | CHEMISTRY | en |
dc.subject | CRYSTALLIZATION | en |
dc.subject | HUMAN | en |
dc.subject | MEDICAL RESEARCH | en |
dc.subject | PHASE TRANSITION | en |
dc.subject | ANIMALS | en |
dc.subject | BIOMEDICAL RESEARCH | en |
dc.subject | CRYSTALLIZATION | en |
dc.subject | HUMANS | en |
dc.subject | INSULIN | en |
dc.subject | PHASE TRANSITION | en |
dc.title | On the theory of crystal growth in metastable systems with biomedical applications: Protein and insulin crystallization | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1098/rsta.2018.0214 | - |
dc.identifier.scopus | 85062411968 | - |
local.contributor.employee | Alexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | |
local.contributor.employee | Nizovtseva, I.G., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | |
local.issue | 2143 | - |
local.volume | 377 | - |
dc.identifier.wos | 000465497000012 | - |
local.contributor.department | Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation | |
local.contributor.department | Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany | |
local.identifier.pure | 6775bb9b-e9d2-4870-95bd-44767687972e | uuid |
local.identifier.pure | 9063585 | - |
local.description.order | 20180214 | - |
local.identifier.eid | 2-s2.0-85062411968 | - |
local.identifier.wos | WOS:000465497000012 | - |
local.identifier.pmid | 30827215 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85062411968.pdf | 967,18 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.