Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101804
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorNizovtseva, I. G.en
dc.date.accessioned2021-08-31T14:59:55Z-
dc.date.available2021-08-31T14:59:55Z-
dc.date.issued2019-
dc.identifier.citationAlexandrov D. V. On the theory of crystal growth in metastable systems with biomedical applications: Protein and insulin crystallization / D. V. Alexandrov, I. G. Nizovtseva. — DOI 10.1098/rsta.2018.0214 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2019. — Vol. 377. — Iss. 2143. — 20180214.en
dc.identifier.issn1364503X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062411968&doi=10.1098%2frsta.2018.0214&partnerID=40&md5=9d47c09bf1b8b81cc67b089b18b7728b
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0214m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101804-
dc.description.abstractA generalized theory of nucleation and growth of crystals in a metastable (supercooled or supersaturated) liquid is developed taking into account two principal effects: The diffusion mechanism of the particle-size distribution function in the space of particle radii and the unsteady-state growth rates of individual crystals induced by fluctuations in external temperature or concentration field. A system of the Fokker-Planck and balance integro-differential equations is formulated and analytically solved in a parametric form for arbitrary nucleation kinetics and arbitrary growth rates of individual crystals. The particle-size distribution function and system metastability are found in an explicit form. The Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetic mechanisms, as well as the unsteady-state growth rates of nuclei (Alexandrov & Alexandrova 2019 Phil. Trans. R. Soc. A 377, 20180209 (doi:10.1098/rsta.2018.0209)), are considered as special cases. Some potential biomedical applications of the present theory for crystal growth from supersaturated solutions are discussed. The theory is compared with experimental data on protein and insulin crystallization (growth dynamics of the proteins lysozyme and canavalin as well as of bovine and porcine insulin is considered). The hat-shaped particle-size distribution functions for lysozyme and canavalin crystals as well as for bovine and porcine insulin are found. This article is part of the theme issue 'Heterogeneous materials: Metastable and non-ergodic internal structures'. ©2019 The Author(s)Published by the Royal Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectCRYSTAL GROWTHen
dc.subjectMETASTABLE LIQUIDen
dc.subjectNUCLEATIONen
dc.subjectPHASE TRANSFORMATIONen
dc.subjectCRYSTAL GROWTHen
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectENZYMESen
dc.subjectINSULINen
dc.subjectINTEGRODIFFERENTIAL EQUATIONSen
dc.subjectLIGHT TRANSMISSIONen
dc.subjectMAMMALSen
dc.subjectMEDICAL APPLICATIONSen
dc.subjectNUCLEATIONen
dc.subjectPARTICLE SIZEen
dc.subjectPARTICLE SIZE ANALYSISen
dc.subjectPHASE TRANSITIONSen
dc.subjectSIZE DISTRIBUTIONen
dc.subjectBIOMEDICAL APPLICATIONSen
dc.subjectCONCENTRATION FIELDSen
dc.subjectEXTERNAL TEMPERATUREen
dc.subjectHETEROGENEOUS MATERIALSen
dc.subjectMETASTABLE LIQUIDen
dc.subjectNUCLEATION AND GROWTHen
dc.subjectSUPERSATURATED SOLUTIONSen
dc.subjectTHEORY OF CRYSTAL GROWTHen
dc.subjectGROWTH KINETICSen
dc.subjectINSULINen
dc.subjectANIMALen
dc.subjectCHEMISTRYen
dc.subjectCRYSTALLIZATIONen
dc.subjectHUMANen
dc.subjectMEDICAL RESEARCHen
dc.subjectPHASE TRANSITIONen
dc.subjectANIMALSen
dc.subjectBIOMEDICAL RESEARCHen
dc.subjectCRYSTALLIZATIONen
dc.subjectHUMANSen
dc.subjectINSULINen
dc.subjectPHASE TRANSITIONen
dc.titleOn the theory of crystal growth in metastable systems with biomedical applications: Protein and insulin crystallizationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2018.0214-
dc.identifier.scopus85062411968-
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeNizovtseva, I.G., Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany
local.issue2143-
local.volume377-
dc.identifier.wos000465497000012-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.departmentPhysikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität Jena, Jena, 07743, Germany
local.identifier.pure6775bb9b-e9d2-4870-95bd-44767687972euuid
local.identifier.pure9063585-
local.description.order20180214-
local.identifier.eid2-s2.0-85062411968-
local.identifier.wosWOS:000465497000012-
local.identifier.pmid30827215-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85062411968.pdf967,18 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.