Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101803
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorIvanov, A. A.en
dc.contributor.authorAlexandrova, I. V.en
dc.contributor.authorAlexandrov, D. V.en
dc.date.accessioned2021-08-31T14:59:55Z-
dc.date.available2021-08-31T14:59:55Z-
dc.date.issued2019-
dc.identifier.citationIvanov A. A. Phase transformations in metastable liquids combined with polymerization / A. A. Ivanov, I. V. Alexandrova, D. V. Alexandrov. — DOI 10.1098/rsta.2018.0215 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2019. — Vol. 377. — Iss. 2143. — 20180215.en
dc.identifier.issn1364503X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062412773&doi=10.1098%2frsta.2018.0215&partnerID=40&md5=6417132cdbd5c46356d76aef6d84fe98
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0215m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101803-
dc.description.abstractThis paper is concerned with the theory of nucleation and growth of crystals in a metastable polymer melt with allowance for the polymerization of a monomer. A mathematical model consisting of the heat balance equation, equations governing the particle-radius distribution function and the polymerization degree is formulated. The exact steady-state analytical solutions are found. In the case of unsteady-state crystallization with polymerization, the particle-size distribution function is determined analytically for different space-time regions by means of the Laplace transform. Two functional integrodifferential equations governing the dimensionless temperature and polymerization degree are deduced. These equations are solved by means of the saddlepoint technique for the evaluation of a Laplace-type integral. The time-dependent distribution function, temperature and polymerization degree at different polymerization rates and nucleation kinetics are derived with allowance for the main contribution to the Laplace-type integral. In addition, the general analytical solution by means of the saddle-point technique and an example showing how to construct the analytical solutions in particular cases are given in the appendices. The analytical method developed in the present paper can be used to describe the similar phase transition phenomena in the presence of chemical reactions. This article is part of the theme issue 'Heterogeneous materials: Metastable and nonergodic internal structures'. ©2019 The Author(s)Published by the Royal Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectCRYSTALLIZATIONen
dc.subjectMETASTABLE LIQUIDen
dc.subjectNUCLEATIONen
dc.subjectPOLYMERIZATIONen
dc.subjectCHEMICAL ANALYSISen
dc.subjectCRYSTALLIZATIONen
dc.subjectDISTRIBUTION FUNCTIONSen
dc.subjectFUNCTIONSen
dc.subjectINTEGRODIFFERENTIAL EQUATIONSen
dc.subjectLAPLACE TRANSFORMSen
dc.subjectNUCLEATIONen
dc.subjectPARTICLE SIZEen
dc.subjectPARTICLE SIZE ANALYSISen
dc.subjectPOLYMER MELTSen
dc.subjectDIMENSIONLESS TEMPERATURESen
dc.subjectGENERAL ANALYTICAL SOLUTIONen
dc.subjectHEAT BALANCE EQUATIONSen
dc.subjectHETEROGENEOUS MATERIALSen
dc.subjectLAPLACE-TYPE INTEGRALSen
dc.subjectMETASTABLE LIQUIDen
dc.subjectPHASE TRANSITION PHENOMENONen
dc.subjectPOLYMERIZATION DEGREEen
dc.subjectPOLYMERIZATIONen
dc.titlePhase transformations in metastable liquids combined with polymerizationen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2018.0215-
dc.identifier.scopus85062412773-
local.contributor.employeeIvanov, A.A., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeAlexandrova, I.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.issue2143-
local.volume377-
dc.identifier.wos000465497000013-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.identifier.pure9963a66b-bfab-48dc-9b9f-897a5b62aad8uuid
local.identifier.pure9063482-
local.description.order20180215-
local.identifier.eid2-s2.0-85062412773-
local.identifier.wosWOS:000465497000013-
local.identifier.pmid30827217-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85062412773.pdf598,32 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.