Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101802
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAlexandrov, D. V.en
dc.contributor.authorAlexandrova, I. V.en
dc.date.accessioned2021-08-31T14:59:54Z-
dc.date.available2021-08-31T14:59:54Z-
dc.date.issued2019-
dc.identifier.citationAlexandrov D. V. On the theory of the unsteady-state growth of spherical crystals in metastable liquids / D. V. Alexandrov, I. V. Alexandrova. — DOI 10.1098/rsta.2018.0209 // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2019. — Vol. 377. — Iss. 2143. — 20180209.en
dc.identifier.issn1364503X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062423309&doi=10.1098%2frsta.2018.0209&partnerID=40&md5=d8de2be23f215053598bd6a8f4105d44
dc.identifier.otherhttps://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2018.0209m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101802-
dc.description.abstractMotivated by a large number of applications, we consider the process of non-stationary growth of spherical crystals in a supercooled binary melt. The moving-boundary problem describing the unsteadystate distributions of temperature and impurity concentration around the growing crystal as well as the dynamics of its radius and growth rate is solved by means of the methods of small-parameter expansion and Laplace-Carson integral transform. We show that the growth rate of crystals contains the main contribution (which is proportional to the supercooling degree) and the first correction (which is proportional to 2t, where t is time). The second correction is also found. The non-stationary temperature and concentration fields are determined as power functions of and t. We demonstrate that the first corrections to the dynamics of crystal radius R(t) and its growth rate V(t) play an important role. It is shown that R(t) andV(t) can change more than twice in comparison with the previously known steady-state solution with the course of time. Such a behaviour will significantly modify the dynamics of a polydisperse ensemble of crystals evolving in a metastable liquid. This article is part of the theme issue 'Heterogeneous materials: Metastable and non-ergodic internal structures'. ©2019 The Author(s) Published by the Royal Society.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherRoyal Society Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2
dc.sourcePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciencesen
dc.subjectCRYSTAL GROWTHen
dc.subjectMETASTABLE LIQUIDen
dc.subjectMOVING-BOUNDARY PROBLEMen
dc.subjectPHASE TRANSFORMATIONen
dc.subjectCRYSTAL GROWTHen
dc.subjectCRYSTAL IMPURITIESen
dc.subjectDYNAMICSen
dc.subjectINTEGRAL EQUATIONSen
dc.subjectLIQUIDSen
dc.subjectPHASE TRANSITIONSen
dc.subjectSUPERCOOLINGen
dc.subjectCONCENTRATION FIELDSen
dc.subjectHETEROGENEOUS MATERIALSen
dc.subjectIMPURITY CONCENTRATIONen
dc.subjectMETASTABLE LIQUIDen
dc.subjectMOVING BOUNDARY PROBLEMSen
dc.subjectPARAMETER EXPANSIONen
dc.subjectSTEADY STATE SOLUTIONen
dc.subjectSUPERCOOLING DEGREESen
dc.subjectGROWTH RATEen
dc.titleOn the theory of the unsteady-state growth of spherical crystals in metastable liquidsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1098/rsta.2018.0209-
dc.identifier.scopus85062423309-
local.contributor.employeeAlexandrov, D.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeAlexandrova, I.V., Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.issue2143-
local.volume377-
dc.identifier.wos000465497000007-
local.contributor.departmentDepartment of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
local.identifier.pured10b60a5-1202-4ae0-84c2-213219e35f61uuid
local.identifier.pure9063287-
local.description.order20180209-
local.identifier.eid2-s2.0-85062423309-
local.identifier.wosWOS:000465497000007-
local.identifier.pmid30827213-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85062423309.pdf619,45 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.