Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101794
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBadia, G.en
dc.contributor.authorOlkhovikov, G.en
dc.date.accessioned2021-08-31T14:59:52Z-
dc.date.available2021-08-31T14:59:52Z-
dc.date.issued2020-
dc.identifier.citationBadia G. A Lindström theorem in many-valued modal logic over a finite MTL-chain / G. Badia, G. Olkhovikov. — DOI 10.1016/j.fss.2019.03.002 // Fuzzy Sets and Systems. — 2020. — Vol. 388. — P. 26-37.en
dc.identifier.issn1650114-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85062700102&doi=10.1016%2fj.fss.2019.03.002&partnerID=40&md5=986e5e30f3eff04129bee879be5fc962
dc.identifier.otherhttps://espace.library.uq.edu.au/view/UQ:41b4dd2/UQ41b4dd2_OA.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101794-
dc.description.abstractWe consider a modal language over crisp frames and formulas evaluated on a finite MTL-chain (a linearly ordered commutative integral residuated lattice). We first show that the basic modal abstract logic with constants for the values of the MTL-chain is the maximal abstract logic satisfying Compactness, the Tarski Union Property and strong invariance for bisimulations. Finally, we improve this result by replacing the Tarski Union Property by a relativization property. © 2019 Elsevier B.V.en
dc.description.sponsorshipWe are grateful to two anonymous referees and the editor of this journal for their numerous and helpful comments. Their help greatly improved the paper. Guillermo Badia is supported by the project I 1923-N25 of the Austrian Science Fund (FWF). Grigory Olkhovikov is supported by Deutsche Forschungsgemeinschaft (DFG), project WA 936/11-1.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceFuzzy Sets Syst2
dc.sourceFuzzy Sets and Systemsen
dc.subjectBISIMULATIONen
dc.subjectFUZZY LOGICen
dc.subjectLINDSTRÖM THEOREMen
dc.subjectMANY-VALUED MODAL LOGICen
dc.subjectMTL-CHAINSen
dc.subjectRESIDUATED LATTICESen
dc.subjectCOMPUTER CIRCUITSen
dc.subjectLINEARIZATIONen
dc.subjectMANY VALUED LOGICSen
dc.subjectABSTRACT LOGICen
dc.subjectBISIMULATIONSen
dc.subjectMODAL LANGUAGEen
dc.subjectMODAL LOGICen
dc.subjectRESIDUATED LATTICESen
dc.subjectSTRONG INVARIANCEen
dc.subjectFUZZY LOGICen
dc.titleA Lindström theorem in many-valued modal logic over a finite MTL-chainen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.fss.2019.03.002-
dc.identifier.scopus85062700102-
local.contributor.employeeBadia, G., Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Linz, Austria, School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Australia
local.contributor.employeeOlkhovikov, G., Department of Philosophy I, Ruhr-Universität Bochum, Bochum, Germany, Department of Philosophy, Ural Federal University, Ekaterinburg, Russian Federation
local.description.firstpage26-
local.description.lastpage37-
local.volume388-
dc.identifier.wos000524268800002-
local.contributor.departmentDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz, Linz, Austria
local.contributor.departmentSchool of Historical and Philosophical Inquiry, University of Queensland, Brisbane, Australia
local.contributor.departmentDepartment of Philosophy I, Ruhr-Universität Bochum, Bochum, Germany
local.contributor.departmentDepartment of Philosophy, Ural Federal University, Ekaterinburg, Russian Federation
local.identifier.pure2dd86377-e74e-42d1-b6cd-75eda79bf8bbuuid
local.identifier.pure12654295-
local.identifier.eid2-s2.0-85062700102-
local.identifier.wosWOS:000524268800002-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85062700102.pdf624,7 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.