Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101742
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKobylkin, K. S.en
dc.date.accessioned2021-08-31T14:59:28Z-
dc.date.available2021-08-31T14:59:28Z-
dc.date.issued2019-
dc.identifier.citationKobylkin K. S. Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks / K. S. Kobylkin. — DOI 10.21538/0134-4889-2019-25-1-62-77 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 25. — Iss. 1. — P. 62-77.en
dc.identifier.issn1344889-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85067669250&doi=10.21538%2f0134-4889-2019-25-1-62-77&partnerID=40&md5=1826b42321edbdb297952d7a1b99f547
dc.identifier.otherhttp://journal.imm.uran.ru/sites/default/files/content/25_1/TrIMMUrORAN_2019_1_p62_L.pdfm
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101742-
dc.description.abstractPolynomial-time approximation algorithms with constant approximation ratio are proposed for the problem of intersection of a given set of n planar straight line segments with the least number of equal disks. In the case where the segments have at most k different orientations, a simple 4k-approximate algorithm with time complexity O(n log n) is known. In addition, a 100-approximate algorithm with time complexity O(n4 log n) is known for the case of the problem on the edge sets of plane graphs. In this paper, for instances of the problem on the edge sets of Gabriel graphs, relative neighbourhood graphs, and Euclidean minimum spanning trees, in which the number of different edge orientations is, in general, unbounded, we construct simple O(n2)-time approximation algorithms with approximation ratios 14, 12, and 10, respectively. These algorithms outperform the aforementioned approximation algorithm for the general setting of the problem for edge sets of plane graphs. © 2019 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTr. Inst. Mat. Meh. UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectAPPROXIMATION ALGORITHMen
dc.subjectCOMBINATORIAL OPTIMIZATIONen
dc.subjectEUCLIDEAN MINIMUM SPANNING TREEen
dc.subjectGABRIEL GRAPHen
dc.subjectGEOMETRIC HITTING SET PROBLEM ON THE PLANEen
dc.subjectRELATIVE NEIGHBORHOOD GRAPHen
dc.subjectSTRAIGHT LINE SEGMENTen
dc.titleApproximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disksen
dc.titleПриближенные алгоритмы с гарантированными оценками точности для пересечения множеств ребер некоторых метрических графов равными кругамиru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi37051094-
dc.identifier.doi10.21538/0134-4889-2019-25-1-62-77-
dc.identifier.scopus85067669250-
local.contributor.employeeKobylkin, K.S., Krasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federation
local.description.firstpage62-
local.description.lastpage77-
local.issue1-
local.volume25-
dc.identifier.wos000470956900006-
local.contributor.departmentKrasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108, Russian Federation
local.contributor.departmentUral Federal University, Yekaterinburg, 620002, Russian Federation
local.identifier.pure9205765-
local.identifier.eid2-s2.0-85067669250-
local.identifier.wosWOS:000470956900006-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85067669250.pdf285,54 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.