Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101742
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kobylkin, K. S. | en |
dc.date.accessioned | 2021-08-31T14:59:28Z | - |
dc.date.available | 2021-08-31T14:59:28Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Kobylkin K. S. Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks / K. S. Kobylkin. — DOI 10.21538/0134-4889-2019-25-1-62-77 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 25. — Iss. 1. — P. 62-77. | en |
dc.identifier.issn | 1344889 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067669250&doi=10.21538%2f0134-4889-2019-25-1-62-77&partnerID=40&md5=1826b42321edbdb297952d7a1b99f547 | |
dc.identifier.other | http://journal.imm.uran.ru/sites/default/files/content/25_1/TrIMMUrORAN_2019_1_p62_L.pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101742 | - |
dc.description.abstract | Polynomial-time approximation algorithms with constant approximation ratio are proposed for the problem of intersection of a given set of n planar straight line segments with the least number of equal disks. In the case where the segments have at most k different orientations, a simple 4k-approximate algorithm with time complexity O(n log n) is known. In addition, a 100-approximate algorithm with time complexity O(n4 log n) is known for the case of the problem on the edge sets of plane graphs. In this paper, for instances of the problem on the edge sets of Gabriel graphs, relative neighbourhood graphs, and Euclidean minimum spanning trees, in which the number of different edge orientations is, in general, unbounded, we construct simple O(n2)-time approximation algorithms with approximation ratios 14, 12, and 10, respectively. These algorithms outperform the aforementioned approximation algorithm for the general setting of the problem for edge sets of plane graphs. © 2019 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | APPROXIMATION ALGORITHM | en |
dc.subject | COMBINATORIAL OPTIMIZATION | en |
dc.subject | EUCLIDEAN MINIMUM SPANNING TREE | en |
dc.subject | GABRIEL GRAPH | en |
dc.subject | GEOMETRIC HITTING SET PROBLEM ON THE PLANE | en |
dc.subject | RELATIVE NEIGHBORHOOD GRAPH | en |
dc.subject | STRAIGHT LINE SEGMENT | en |
dc.title | Approximation algorithms with guaranteed performance for the intersection of edge sets of some metric graphs with equal disks | en |
dc.title | Приближенные алгоритмы с гарантированными оценками точности для пересечения множеств ребер некоторых метрических графов равными кругами | ru |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 37051094 | - |
dc.identifier.doi | 10.21538/0134-4889-2019-25-1-62-77 | - |
dc.identifier.scopus | 85067669250 | - |
local.contributor.employee | Kobylkin, K.S., Krasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 62 | - |
local.description.lastpage | 77 | - |
local.issue | 1 | - |
local.volume | 25 | - |
dc.identifier.wos | 000470956900006 | - |
local.contributor.department | Krasovsky Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620108, Russian Federation | |
local.contributor.department | Ural Federal University, Yekaterinburg, 620002, Russian Federation | |
local.identifier.pure | 9205765 | - |
local.identifier.eid | 2-s2.0-85067669250 | - |
local.identifier.wos | WOS:000470956900006 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85067669250.pdf | 285,54 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.