Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101731
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomoyunov, M.en
dc.date.accessioned2021-08-31T14:59:25Z-
dc.date.available2021-08-31T14:59:25Z-
dc.date.issued2019-
dc.identifier.citationGomoyunov M. Approximation of fractional order conflict-controlled systems / M. Gomoyunov. — DOI 10.18576/PFDA/050205 // Progress in Fractional Differentiation and Applications. — 2019. — Vol. 5. — Iss. 2. — P. 143-155.en
dc.identifier.issn23569336-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068862046&doi=10.18576%2fPFDA%2f050205&partnerID=40&md5=f5f67794b26398c2296b499f9f2db582
dc.identifier.otherhttp://arxiv.org/pdf/1805.10838m
dc.identifier.urihttp://hdl.handle.net/10995/101731-
dc.description.abstractWe consider a conflict-controlled dynamical system described by a nonlinear ordinary fractional differential equation with the Caputo derivative of an order α ∈ (0,1). Basing on the finite-difference Grünwald-Letnikov formulas, we propose an approximation of the considered system by a system described by a functional-differential equation of a retarded type. A mutual aiming procedure between the initial conflict-controlled system and the approximating system is given that guarantees the desired proximity between their motions. This procedure allows to apply, via the approximating system, the results obtained for functional-differential systems for solving control problems in fractional order systems. Examples are considered, results of numerical simulations are presented. © 2019 NSP.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherNatural Sciences Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceProg. Fract. Differ. Appl.2
dc.sourceProgress in Fractional Differentiation and Applicationsen
dc.subjectAPPROXIMATIONen
dc.subjectCONTROL PROBLEMen
dc.subjectDISTURBANCESen
dc.subjectFRACTIONAL DIFFERENTIAL EQUATIONen
dc.subjectFRACTIONAL ORDER DIFFERENCEen
dc.titleApproximation of fractional order conflict-controlled systemsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.18576/PFDA/050205-
dc.identifier.scopus85068862046-
local.contributor.employeeGomoyunov, M., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russian Federation, Ural Federal University, Ekaterinburg, 620002, Russian Federation
local.description.firstpage143-
local.description.lastpage155-
local.issue2-
local.volume5-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, Ekaterinburg, 620990, Russian Federation
local.contributor.departmentUral Federal University, Ekaterinburg, 620002, Russian Federation
local.identifier.pure10473737-
local.identifier.purefac13e56-c371-48ad-bd47-aa8823d4c54fuuid
local.identifier.eid2-s2.0-85068862046-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85068862046.pdf557,64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.