Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101718
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Martyshko, P. S. | en |
dc.contributor.author | Byzov, D. D. | en |
dc.contributor.author | Chernoskutov, A. I. | en |
dc.date.accessioned | 2021-08-31T14:59:19Z | - |
dc.date.available | 2021-08-31T14:59:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Martyshko P. S. Numerical solution of the forward magnetic field problem for models with irregular polyhedron discretization taking into account the "demagnetization effect" / P. S. Martyshko, D. D. Byzov, A. I. Chernoskutov. — DOI 10.1063/5.0026755 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140010. | en |
dc.identifier.isbn | 9780735440258 | - |
dc.identifier.issn | 0094243X | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097973255&doi=10.1063%2f5.0026755&partnerID=40&md5=64109f050d20839a8237a4c2429ec281 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101718 | - |
dc.description.abstract | A performance-effective numerical method for magnetic field calculation is proposed. The method works with irregular polyhedron discretization which enables us to construct models with magnetic objects of arbitrary shape. As a case study, a model of a well in plane-parallel layer is considered. The model is approximated with dense irregular grid, elements of which are polyhedrons. With the help of conjugate gradient method, we solve "demagnetization effect" equation and calculate total magnetic field on the plane above the well. For a well of 0.25m radius and 8m height "demagnetization effect" is of order of 2% relative to the field induced by the object placed in equivalent of Earth magnetic field. © 2020 American Institute of Physics Inc.. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | American Institute of Physics Inc. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | AIP Conf. Proc. | 2 |
dc.source | AIP Conference Proceedings | en |
dc.title | Numerical solution of the forward magnetic field problem for models with irregular polyhedron discretization taking into account the "demagnetization effect" | en |
dc.type | Conference Paper | en |
dc.type | info:eu-repo/semantics/conferenceObject | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1063/5.0026755 | - |
dc.identifier.scopus | 85097973255 | - |
local.contributor.employee | Martyshko, P.S., Bulashevich Institute of Geophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation, Yeltsin Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Byzov, D.D., Bulashevich Institute of Geophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation | |
local.contributor.employee | Chernoskutov, A.I., Bulashevich Institute of Geophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation | |
local.volume | 2293 | - |
dc.identifier.wos | 000636709500239 | - |
local.contributor.department | Bulashevich Institute of Geophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation | |
local.contributor.department | Yeltsin Ural Federal University, Yekaterinburg, Russian Federation | |
local.identifier.pure | 415089b9-fc05-405e-9b8c-06c763954704 | uuid |
local.identifier.pure | 20396612 | - |
local.description.order | 140010 | - |
local.identifier.eid | 2-s2.0-85097973255 | - |
local.identifier.wos | WOS:000636709500239 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85097973255.pdf | 1,35 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.