Please use this identifier to cite or link to this item:
Title: Determining Fireball Fates Using the α-β Criterion
Authors: Sansom, E. K.
Gritsevich, M.
Devillepoix, H. A. R.
Jansen-Sturgeon, T.
Shober, P.
Bland, P. A.
Towner, M. C.
Cupák, M.
Howie, R. M.
Hartig, B. A. D.
Issue Date: 2019
Publisher: Institute of Physics Publishing
Citation: Determining Fireball Fates Using the α-β Criterion / E. K. Sansom, M. Gritsevich, H. A. R. Devillepoix, et al. — DOI 10.3847/1538-4357/ab4516 // Astrophysical Journal. — 2019. — Vol. 885. — Iss. 2. — 115.
Abstract: As fireball networks grow, the number of events observed becomes unfeasible to manage by manual efforts. Reducing and analyzing big data requires automated data pipelines. Triangulation of a fireball trajectory can swiftly provide information on positions and, with timing information, velocities. However, extending this pipeline to determine the terminal mass estimate of a meteoroid is a complex next step. Established methods typically require assumptions to be made of the physical meteoroid characteristics (such as shape and bulk density). To determine which meteoroids may have survived entry there are empirical criteria that use a fireball's final height and velocity - low and slow final parameters are likely the best candidates. We review the more elegant approach of the dimensionless coefficient method. Two parameters, α (ballistic coefficient) and β (mass loss), can be calculated for any event with some degree of deceleration, given only velocity and height information. α and β can be used to analytically describe a trajectory with the advantage that they are not mere fitting coefficients; they also represent the physical meteoroid properties. This approach can be applied to any fireball network as an initial identification of key events and determine on which to concentrate resources for more in-depth analyses. We used a set of 278 events observed by the Desert Fireball Network to show how visualization in an α-β diagram can quickly identify which fireballs are likely meteorite candidates. © 2019. The American Astronomical Society. All rights reserved.
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85075129693
PURE ID: 11348372
ISSN: 0004637X
DOI: 10.3847/1538-4357/ab4516
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85075129693.pdf1,3 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.