Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101668
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kovalevsky, A. A. | en |
dc.date.accessioned | 2021-08-31T14:58:49Z | - |
dc.date.available | 2021-08-31T14:58:49Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Kovalevsky A. A. Integrability properties of functions with a given behavior of distribution functions and some applications / A. A. Kovalevsky. — DOI 10.21538/0134-4889-2019-25-1-78-92 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 25. — Iss. 1. — P. 78-92. | en |
dc.identifier.issn | 1344889 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075216614&doi=10.21538%2f0134-4889-2019-25-1-78-92&partnerID=40&md5=542a461d73e2381499553e4553e060cc | |
dc.identifier.other | http://journal.imm.uran.ru/sites/default/files/content/25_1/TrIMMUrORAN_2019_1_p78_L.pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101668 | - |
dc.description.abstract | We establish that if the distribution function of a measurable function v given on a bounded domain Ω of Rn (n > 2) satisfies, for sufficiently large k, the estimate meas{|v| > k} 6 k−αϕ(k)/ψ(k), where α > 0, ϕ: [1, +∞) → R is a nonnegative nonincreasing measurable function such that the integral of the function s → ϕ(s)/s over [1, +∞) is finite, and ψ: [0, +∞) → R is a positive continuous function with some additional properties, then |v|αψ(|v|) ∈ L1(Ω). In so doing, the function ψ can be bounded or unbounded. We give corollaries of the corresponding theorems for some specific ratios of the functions ϕ and ψ. In particular, we consider the case where the distribution function of a measurable function v satisfies, for sufficiently large k, the estimate meas{|v| > k} 6 Ck−α(ln k)−β with C, α > 0 and β > 0. In this case, we strengthen our previous result for β > 1 and, on the whole, we show how the integrability properties of the function v differ depending on which of the intervals [0, 1] or (1, +∞) contains β. We also consider the case where the distribution function of a measurable function v satisfies, for sufficiently large k, the estimate meas{|v| > k} 6 Ck−α(ln ln k)−β with C, α > 0 and β > 0. We give examples showing the accuracy of the obtained results in the corresponding scales of classes close to Lα(Ω). Finally, we give applications of these results to entropy and weak solutions of the Dirichlet problem for nonlinear elliptic second-order equations with right-hand side in some classes close to L1(Ω) and defined by the logarithmic function or its double composition. © 2019 Krasovskii Institute of Mathematics and Mechanics. All Rights Reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | DIRICHLET PROBLEM | en |
dc.subject | DISTRIBUTION FUNCTION | en |
dc.subject | ENTROPY SOLUTION | en |
dc.subject | INTEGRABILITY | en |
dc.subject | NONLINEAR ELLIPTIC EQUATIONS | en |
dc.subject | RIGHT-HAND SIDE IN CLASSES CLOSE TO L1 | en |
dc.subject | WEAK SOLUTION | en |
dc.title | Integrability properties of functions with a given behavior of distribution functions and some applications | en |
dc.title | Свойства интегрируемости функций с заданным поведением функций распределения и некоторые приложения | ru |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 37051095 | - |
dc.identifier.doi | 10.21538/0134-4889-2019-25-1-78-92 | - |
dc.identifier.scopus | 85075216614 | - |
local.contributor.employee | Kovalevsky, A.A., Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 78 | - |
local.description.lastpage | 92 | - |
local.issue | 1 | - |
local.volume | 25 | - |
dc.identifier.wos | 000470956900007 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | |
local.contributor.department | Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620002, Russian Federation | |
local.identifier.pure | 9205789 | - |
local.identifier.eid | 2-s2.0-85075216614 | - |
local.identifier.wos | WOS:000470956900007 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85075216614.pdf | 245,67 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.