Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101592
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Blueschke, D. | en |
dc.contributor.author | Savin, I. | en |
dc.contributor.author | Blueschke-Nikolaeva, V. | en |
dc.date.accessioned | 2021-08-31T14:58:19Z | - |
dc.date.available | 2021-08-31T14:58:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Blueschke D. An Evolutionary Approach to Passive Learning in Optimal Control Problems / D. Blueschke, I. Savin, V. Blueschke-Nikolaeva. — DOI 10.1007/s10614-019-09961-4 // Computational Economics. — 2020. — Vol. 56. — Iss. 3. — P. 659-673. | en |
dc.identifier.issn | 9277099 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Hybrid Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077600937&doi=10.1007%2fs10614-019-09961-4&partnerID=40&md5=95c936e38fd3f20214ad3c613d5cc8ea | |
dc.identifier.other | https://link.springer.com/content/pdf/10.1007/s10614-019-09961-4.pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101592 | - |
dc.description.abstract | We consider the optimal control problem of a small nonlinear econometric model under parameter uncertainty and passive learning (open-loop feedback). Traditionally, this type of problems has been approached by applying linear-quadratic optimization algorithms. However, the literature demonstrated that those methods are very sensitive to the choice of random seeds frequently producing very large objective function values (outliers). Furthermore, to apply those established methods, the original nonlinear problem must be linearized first, which runs the risk of solving already a different problem. Following Savin and Blueschke (Comput Econ 48(2):317–338, 2016) in explicitly addressing parameter uncertainty with a large Monte Carlo experiment of possible parameter realizations and optimizing it with the Differential Evolution algorithm, we extend this approach to the case of passive learning. Our approach provides more robust results demonstrating greater benefit from learning, while at the same time does not require to modify the original nonlinear problem at hand. This result opens new avenues for application of heuristic optimization methods to learning strategies in optimal control research. © 2019, The Author(s). | en |
dc.description.sponsorship | Open access funding provided by University of Klagenfurt. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Comput. Econ. | 2 |
dc.source | Computational Economics | en |
dc.subject | DIFFERENTIAL EVOLUTION | en |
dc.subject | OPTIMAL CONTROL | en |
dc.subject | PASSIVE LEARNING | en |
dc.subject | STOCHASTIC PROBLEMS | en |
dc.title | An Evolutionary Approach to Passive Learning in Optimal Control Problems | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/s10614-019-09961-4 | - |
dc.identifier.scopus | 85077600937 | - |
local.contributor.employee | Blueschke, D., University of Klagenfurt, Klagenfurt, Austria | |
local.contributor.employee | Savin, I., Institute of Environmental Science and Technology, Universitat Autónoma de Barcelona, Cerdanyola del Vallès, Spain, Graduate School of Economics and Management, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Blueschke-Nikolaeva, V., University of Klagenfurt, Klagenfurt, Austria | |
local.description.firstpage | 659 | - |
local.description.lastpage | 673 | - |
local.issue | 3 | - |
local.volume | 56 | - |
dc.identifier.wos | 000505359100002 | - |
local.contributor.department | University of Klagenfurt, Klagenfurt, Austria | |
local.contributor.department | Institute of Environmental Science and Technology, Universitat Autónoma de Barcelona, Cerdanyola del Vallès, Spain | |
local.contributor.department | Graduate School of Economics and Management, Ural Federal University, Yekaterinburg, Russian Federation | |
local.identifier.pure | f0fd9e67-0382-497e-aa78-eac37d52ac47 | uuid |
local.identifier.pure | 20127615 | - |
local.identifier.eid | 2-s2.0-85077600937 | - |
local.identifier.wos | WOS:000505359100002 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85077600937.pdf | 495,29 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.