Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101578
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Makhnev, A. A. | en |
dc.contributor.author | Golubyatnikov, M. P. | en |
dc.date.accessioned | 2021-08-31T14:58:15Z | - |
dc.date.available | 2021-08-31T14:58:15Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Makhnev A. A. Nonexistence of certain Q-polynomial distance-regular graphs / A. A. Makhnev, M. P. Golubyatnikov. — DOI 10.21538/0134-4889-2019-25-4-136-141 // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2019. — Vol. 25. — Iss. 4. — P. 136-141. | en |
dc.identifier.issn | 1344889 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Bronze | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078521647&doi=10.21538%2f0134-4889-2019-25-4-136-141&partnerID=40&md5=2ba0b002f6616b9d2c8fb76bdb08c6a5 | |
dc.identifier.other | http://journal.imm.uran.ru/sites/default/files/content/25_4/TrIMMUrORAN_2019_4_p136_L.pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101578 | - |
dc.description.abstract | I. N. Belousov, A. A. Makhnev, and M. S. Nirova described Q-polynomial distance-regular graphs Γ of diameter 3 for which the graphs Γ2 and Γ3 are strongly regular. Set a = a3. A graph Γ has type (I) if c2 + 1 divides a, type (II) if c2 + 1 divides a + 1, and type (III) if c2 + 1 divides neither a nor a + 1. If Γ is a graph of type (II), then a + 1 = w(c2 + 1), t2 = w(w(c2 + 1) + c2), and either (i) w = s2, t2 = s2(s2(c2 + 1) + c2), (s2(c2 + 1) + c2 is the square of an integer u, c2 = (u2 − s2)/(s2 + 1), t = su, and a = (u2s2 − 1)/(s2 + 1) or (ii) c2 = sw, t2 = w2(sw + 1 + s), sw + 1 + s is the square of an integer u, c2 = (u2 − 1)w/(w + 1), t = uw, a = (u2w2 − 1)/(w + 1), and Γ has intersection array (equation presented) If a graph of type (IIii) is such that w = u, then it has intersection array {w4 + w − 1, w4 − w3, (w2 − w + 1)w; 1, w(w − 1), (w2 − w + 1)w2}. We prove that graphs with such intersection arrays do not exist for even w. © 2019 Krasovskii Institute of Mathematics and Mechanics. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | ru | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Tr. Inst. Mat. Meh. UrO RAN | 2 |
dc.source | Trudy Instituta Matematiki i Mekhaniki UrO RAN | en |
dc.subject | DISTANCE-REGULAR GRAPH | en |
dc.subject | Q-POLYNOMIAL GRAPH | en |
dc.title | Nonexistence of certain Q-polynomial distance-regular graphs | en |
dc.title | Несуществование некоторых Q-полиномиальных дистанционно регулярных графов | ru |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 41455529 | - |
dc.identifier.doi | 10.21538/0134-4889-2019-25-4-136-141 | - |
dc.identifier.scopus | 85078521647 | - |
local.contributor.employee | Makhnev, A.A., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federation | |
local.contributor.employee | Golubyatnikov, M.P., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation, Ural Federal University, Yekaterinburg, 620083, Russian Federation | |
local.description.firstpage | 136 | - |
local.description.lastpage | 141 | - |
local.issue | 4 | - |
local.volume | 25 | - |
dc.identifier.wos | 000501769500014 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russian Federation | |
local.contributor.department | Ural Federal University, Yekaterinburg, 620083, Russian Federation | |
local.identifier.pure | 11465062 | - |
local.identifier.eid | 2-s2.0-85078521647 | - |
local.identifier.wos | WOS:000501769500014 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85078521647.pdf | 171,45 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.