Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101571
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chernykh, N. I. | en |
dc.date.accessioned | 2021-08-31T14:58:13Z | - |
dc.date.available | 2021-08-31T14:58:13Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Chernykh N. I. Interpolating wavelets on the sphere / N. I. Chernykh. — DOI 10.15826/umj.2019.2.001 // Ural Mathematical Journal. — 2019. — Vol. 5. — Iss. 2. — P. 3-12. | en |
dc.identifier.issn | 24143952 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Gold, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078782898&doi=10.15826%2fumj.2019.2.001&partnerID=40&md5=878941a724b43c690b831eb8c9c0cf0a | |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/download/200/pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101571 | - |
dc.description.abstract | There are several works where bases of wavelets on the sphere (mainly orthogonal and wavelet-like bases) were constructed. In all such constructions, the authors seek to preserve the most important properties of classical wavelets including constructions on the basis of the lifting-scheme. In the present paper, we propose one more construction of wavelets on the sphere. Although two of three systems of wavelets constructed in this paper are orthogonal, we are more interested in their interpolation properties. Our main idea consists in a special double expansion of the unit sphere in R3 such that any continuous function on this sphere defined in spherical coordinates is easily mapped into a 2π-periodic function on the plane. After that everything becomes simple, since the classical scheme of the tensor product of one-dimensional bases of functional spaces works to construct bases of spaces of functions of several variables. © 2019, Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences. All rights reserved. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Ural Math. J. | 2 |
dc.source | Ural Mathematical Journal | en |
dc.subject | BEST APPROXIMATION | en |
dc.subject | INTERPOLATING WAVELETS | en |
dc.subject | MULTIRESOLUTION ANALYSIS | en |
dc.subject | SCALING FUNCTIONS | en |
dc.subject | TRIGONOMETRIC POLYNOMIALS | en |
dc.subject | WAVELETS | en |
dc.title | Interpolating wavelets on the sphere | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 41672789 | - |
dc.identifier.doi | 10.15826/umj.2019.2.001 | - |
dc.identifier.scopus | 85078782898 | - |
local.contributor.employee | Chernykh, N.I., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str, Ekaterinburg, 620990, Russian Federation, Ural Federal University, 51 Lenin aven, Ekaterinburg, 620000, Russian Federation | |
local.description.firstpage | 3 | - |
local.description.lastpage | 12 | - |
local.issue | 2 | - |
local.volume | 5 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str, Ekaterinburg, 620990, Russian Federation | |
local.contributor.department | Ural Federal University, 51 Lenin aven, Ekaterinburg, 620000, Russian Federation | |
local.identifier.pure | 12012044 | - |
local.identifier.pure | a4469820-bf5f-4243-aac5-5301f122dcf9 | uuid |
local.identifier.eid | 2-s2.0-85078782898 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85078782898.pdf | 169,34 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.