Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarimov, A.en
dc.contributor.authorRazumov, A.en
dc.contributor.authorManbatchurina, R.en
dc.contributor.authorSimonova, K.en
dc.contributor.authorDonets, I.en
dc.contributor.authorVlasova, A.en
dc.contributor.authorKhramtsova, Y.en
dc.contributor.authorUshenin, K.en
dc.date.accessioned2021-08-31T14:58:13Z-
dc.date.available2021-08-31T14:58:13Z-
dc.date.issued2019-
dc.identifier.citationComparison of UNet, ENet, and BoxENet for Segmentation of Mast Cells in Scans of Histological Slices / A. Karimov, A. Razumov, R. Manbatchurina, et al. — DOI 10.1109/SIBIRCON48586.2019.8958121 // SIBIRCON 2019 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedings. — 2019. — P. 544-547. — 8958121.en
dc.identifier.isbn9781728144016-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85079079261&doi=10.1109%2fSIBIRCON48586.2019.8958121&partnerID=40&md5=f9f9768692e5c0ebd3a963667a53fff5
dc.identifier.otherhttp://arxiv.org/pdf/1909.06840m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101568-
dc.description.abstractDeep neural networks show high accuracy in the problem of semantic and instance segmentation of biomedical data. However, this approach is computationally expensive. The computational cost may be reduced with network simplification after training or choosing the proper architecture, which provides segmentation with less accuracy but does it much faster. In the present study, we analyzed the accuracy and performance of UNet and ENet architectures for the problem of semantic image segmentation. In addition, we investigated the ENet architecture by replacing of some convolution layers with box-convolution layers. The analysis performed on the original dataset consisted of histology slices with mast cells. These cells provide a region for segmentation with different types of borders, which vary from clearly visible to ragged. ENet was less accurate than UNet by only about 1-2%, but ENet performance was 8-15 times faster than UNet one. © 2019 IEEE.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSIBIRCON - Int. Multi-Conf. Eng., Comput. Inf. Sci., Proc.2
dc.sourceSIBIRCON 2019 - International Multi-Conference on Engineering, Computer and Information Sciences, Proceedingsen
dc.subjectBIOMEDICAL SEGMENTATIONen
dc.subjectBOX CONVOLUTION LAYERen
dc.subjectENETen
dc.subjectMAST CELLSen
dc.subjectNEURAL NETWORK PERFORMANCEen
dc.subjectSEMANTIC SEGMENTATIONen
dc.subjectUNETen
dc.subjectCELLSen
dc.subjectCONVOLUTIONen
dc.subjectCYTOLOGYen
dc.subjectDEEP NEURAL NETWORKSen
dc.subjectMULTILAYER NEURAL NETWORKSen
dc.subjectNETWORK ARCHITECTUREen
dc.subjectNEURAL NETWORKSen
dc.subjectSEMANTICSen
dc.subjectBOX CONVOLUTION LAYERen
dc.subjectENETen
dc.subjectMAST CELLSen
dc.subjectSEMANTIC SEGMENTATIONen
dc.subjectUNETen
dc.subjectIMAGE SEGMENTATIONen
dc.titleComparison of UNet, ENet, and BoxENet for Segmentation of Mast Cells in Scans of Histological Slicesen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1109/SIBIRCON48586.2019.8958121-
dc.identifier.scopus85079079261-
local.contributor.employeeKarimov, A., Engineering School of ITTCS, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeRazumov, A., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeManbatchurina, R., Engineering School of ITTCS, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeSimonova, K., Engineering School of ITTCS, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeDonets, I., Engineering School of ITTCS, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeVlasova, A., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeKhramtsova, Y., Institute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeUshenin, K., Laboratory of Translational Medicine and Bioinformatics, Institute of Immunology and Physiology, Ekaterinburg, Russian Federation
local.description.firstpage544-
local.description.lastpage547-
local.contributor.departmentEngineering School of ITTCS, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.departmentInstitute of Natural Sciences, Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.departmentLaboratory of Translational Medicine and Bioinformatics, Institute of Immunology and Physiology, Ekaterinburg, Russian Federation
local.identifier.pure12233303-
local.identifier.purecd421f0d-d0f0-4add-b256-ce80791fe589uuid
local.description.order8958121-
local.identifier.eid2-s2.0-85079079261-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85079079261.pdf445,44 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.