Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101551
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Averboukh, Y. | en |
dc.date.accessioned | 2021-08-31T14:58:07Z | - |
dc.date.available | 2021-08-31T14:58:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Averboukh Y. Deterministic Limit of Mean Field Games Associated with Nonlinear Markov Processes / Y. Averboukh. — DOI 10.1007/s00245-018-9486-9 // Applied Mathematics and Optimization. — 2020. — Vol. 81. — Iss. 3. — P. 711-738. | en |
dc.identifier.issn | 954616 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081402595&doi=10.1007%2fs00245-018-9486-9&partnerID=40&md5=5115cf72852d99efb4ecd3dc223f8b89 | |
dc.identifier.other | http://arxiv.org/pdf/1512.07887 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101551 | - |
dc.description.abstract | The paper is concerned with the deterministic limit of mean field games with a nonlocal coupling. It is assumed that the dynamics of mean field games are given by nonlinear Markov processes. This type of games includes stochastic mean field games as well as mean field games with finite state space. We consider the limiting deterministic mean field game within the framework of minimax approach. The concept of minimax solutions is close to the probabilistic formulation. In this case the Hamilton–Jacobi equation is considered in the minimax/viscosity sense, whereas the flow of probabilities is determined by the probability on the set of solutions of the differential inclusion associated with the Hamilton–Jacobi equation such that those solutions are viable in the graph of the minimax solution. The main result of the paper is the convergence (up to subsequence) of the solutions of the mean field games to the minimax solution of a deterministic mean field game in the case when the underlying dynamics converge to the deterministic evolution. © 2018, Springer Science+Business Media, LLC, part of Springer Nature. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Appl Math Optim | 2 |
dc.source | Applied Mathematics and Optimization | en |
dc.subject | DETERMINISTIC LIMIT | en |
dc.subject | MEAN FIELD GAMES | en |
dc.subject | MINIMAX SOLUTIONS | en |
dc.subject | FLOW GRAPHS | en |
dc.subject | STOCHASTIC SYSTEMS | en |
dc.subject | DETERMINISTIC LIMIT | en |
dc.subject | DIFFERENTIAL INCLUSIONS | en |
dc.subject | FINITE STATE SPACES | en |
dc.subject | MEAN FIELD GAMES | en |
dc.subject | MINIMAX | en |
dc.subject | NONLOCAL COUPLING | en |
dc.subject | PROBABILISTIC FORMULATION | en |
dc.subject | UNDERLYING DYNAMICS | en |
dc.subject | MARKOV PROCESSES | en |
dc.title | Deterministic Limit of Mean Field Games Associated with Nonlinear Markov Processes | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1007/s00245-018-9486-9 | - |
dc.identifier.scopus | 85081402595 | - |
local.contributor.employee | Averboukh, Y., Krasovskii Intitute of Mathematics and Mechanics UrB RAS, 16, S. Kovalevskaya, Yekaterinburg, Russian Federation, Ural Federal University, 19, Mira, Yekaterinburg, Russian Federation | |
local.description.firstpage | 711 | - |
local.description.lastpage | 738 | - |
local.issue | 3 | - |
local.volume | 81 | - |
dc.identifier.wos | 000536676400003 | - |
local.contributor.department | Krasovskii Intitute of Mathematics and Mechanics UrB RAS, 16, S. Kovalevskaya, Yekaterinburg, Russian Federation | |
local.contributor.department | Ural Federal University, 19, Mira, Yekaterinburg, Russian Federation | |
local.identifier.pure | fbb4fb1c-331e-477d-ad8f-1440392bdc1b | uuid |
local.identifier.pure | 13142324 | - |
local.identifier.eid | 2-s2.0-85081402595 | - |
local.identifier.wos | WOS:000536676400003 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85081402595.pdf | 319,08 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.