Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101551
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAverboukh, Y.en
dc.date.accessioned2021-08-31T14:58:07Z-
dc.date.available2021-08-31T14:58:07Z-
dc.date.issued2020-
dc.identifier.citationAverboukh Y. Deterministic Limit of Mean Field Games Associated with Nonlinear Markov Processes / Y. Averboukh. — DOI 10.1007/s00245-018-9486-9 // Applied Mathematics and Optimization. — 2020. — Vol. 81. — Iss. 3. — P. 711-738.en
dc.identifier.issn954616-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85081402595&doi=10.1007%2fs00245-018-9486-9&partnerID=40&md5=5115cf72852d99efb4ecd3dc223f8b89
dc.identifier.otherhttp://arxiv.org/pdf/1512.07887m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101551-
dc.description.abstractThe paper is concerned with the deterministic limit of mean field games with a nonlocal coupling. It is assumed that the dynamics of mean field games are given by nonlinear Markov processes. This type of games includes stochastic mean field games as well as mean field games with finite state space. We consider the limiting deterministic mean field game within the framework of minimax approach. The concept of minimax solutions is close to the probabilistic formulation. In this case the Hamilton–Jacobi equation is considered in the minimax/viscosity sense, whereas the flow of probabilities is determined by the probability on the set of solutions of the differential inclusion associated with the Hamilton–Jacobi equation such that those solutions are viable in the graph of the minimax solution. The main result of the paper is the convergence (up to subsequence) of the solutions of the mean field games to the minimax solution of a deterministic mean field game in the case when the underlying dynamics converge to the deterministic evolution. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAppl Math Optim2
dc.sourceApplied Mathematics and Optimizationen
dc.subjectDETERMINISTIC LIMITen
dc.subjectMEAN FIELD GAMESen
dc.subjectMINIMAX SOLUTIONSen
dc.subjectFLOW GRAPHSen
dc.subjectSTOCHASTIC SYSTEMSen
dc.subjectDETERMINISTIC LIMITen
dc.subjectDIFFERENTIAL INCLUSIONSen
dc.subjectFINITE STATE SPACESen
dc.subjectMEAN FIELD GAMESen
dc.subjectMINIMAXen
dc.subjectNONLOCAL COUPLINGen
dc.subjectPROBABILISTIC FORMULATIONen
dc.subjectUNDERLYING DYNAMICSen
dc.subjectMARKOV PROCESSESen
dc.titleDeterministic Limit of Mean Field Games Associated with Nonlinear Markov Processesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s00245-018-9486-9-
dc.identifier.scopus85081402595-
local.contributor.employeeAverboukh, Y., Krasovskii Intitute of Mathematics and Mechanics UrB RAS, 16, S. Kovalevskaya, Yekaterinburg, Russian Federation, Ural Federal University, 19, Mira, Yekaterinburg, Russian Federation
local.description.firstpage711-
local.description.lastpage738-
local.issue3-
local.volume81-
dc.identifier.wos000536676400003-
local.contributor.departmentKrasovskii Intitute of Mathematics and Mechanics UrB RAS, 16, S. Kovalevskaya, Yekaterinburg, Russian Federation
local.contributor.departmentUral Federal University, 19, Mira, Yekaterinburg, Russian Federation
local.identifier.purefbb4fb1c-331e-477d-ad8f-1440392bdc1buuid
local.identifier.pure13142324-
local.identifier.eid2-s2.0-85081402595-
local.identifier.wosWOS:000536676400003-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85081402595.pdf319,08 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.