Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101532
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorPetrova, E. A.en
dc.contributor.authorShur, A. M.en
dc.date.accessioned2021-08-31T14:57:57Z-
dc.date.available2021-08-31T14:57:57Z-
dc.date.issued2021-
dc.identifier.citationPetrova E. A. Transition Property for Cube-Free Words / E. A. Petrova, A. M. Shur. — DOI 10.1007/s00224-020-09979-4 // Theory of Computing Systems. — 2021. — Vol. 65. — Iss. 3. — P. 479-496.en
dc.identifier.issn14324350-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084089411&doi=10.1007%2fs00224-020-09979-4&partnerID=40&md5=c8183daaf0b6cc9b6b5fceb0f3a2961b
dc.identifier.otherhttp://arxiv.org/pdf/1812.11119m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101532-
dc.description.abstractWe study cube-free words over arbitrary non-unary finite alphabets and prove the following structural property: for every pair (u, v) of d-ary cube-free words, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a “transition” word w over the same alphabet such that uwv is cube free. The crucial case is the case of the binary alphabet, analyzed in the central part of the paper. The obtained “transition property”, together with the developed technique, allowed us to solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free words of very big subword (factor) complexity. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.en
dc.description.sponsorshipE.A. Petrova — Supported by the Russian Science Foundation, grant 18-71-00043.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.relationinfo:eu-repo/grantAgreement/RSF//18-71-00043en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTheory Comput. Syst.2
dc.sourceTheory of Computing Systemsen
dc.subjectCUBE-FREE WORDen
dc.subjectEXTENDABLE WORDen
dc.subjectPOWER-FREE WORDen
dc.subjectTRANSITION PROPERTYen
dc.subjectCOMPUTER SCIENCEen
dc.subjectMATHEMATICAL TECHNIQUESen
dc.subjectBINARY ALPHABETSen
dc.subjectCOMBINATORICS ON WORDSen
dc.subjectFINITE ALPHABETen
dc.subjectSUB WORDSen
dc.subjectTRANSITION PROPERTIESen
dc.subjectGEOMETRYen
dc.titleTransition Property for Cube-Free Wordsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/s00224-020-09979-4-
dc.identifier.scopus85084089411-
local.contributor.employeePetrova, E.A., Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeShur, A.M., Ural Federal University, Ekaterinburg, Russian Federation
local.description.firstpage479-
local.description.lastpage496-
local.issue3-
local.volume65-
dc.identifier.wos000528113900001-
local.contributor.departmentUral Federal University, Ekaterinburg, Russian Federation
local.identifier.pure21881783-
local.identifier.eid2-s2.0-85084089411-
local.fund.rsf18-71-00043-
local.identifier.wosWOS:000528113900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85084089411.pdf666,48 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.