Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101531
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAverboukh, Y.en
dc.date.accessioned2021-08-31T14:57:57Z-
dc.date.available2021-08-31T14:57:57Z-
dc.date.issued2020-
dc.identifier.citationAverboukh Y. Viability analysis of the first-order mean field games / Y. Averboukh. — DOI 10.1051/cocv/2019013 // ESAIM - Control, Optimisation and Calculus of Variations. — 2020. — Vol. 26. — 2019013.en
dc.identifier.issn12928119-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084109037&doi=10.1051%2fcocv%2f2019013&partnerID=40&md5=762fcb5bfd92c633db6a2ad1938baa30
dc.identifier.otherhttp://arxiv.org/pdf/1805.00112m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101531-
dc.description.abstractIn the paper, we examine the dependence of the solution of the deterministic mean field game on the initial distribution of players. The main object of study is the mapping which assigns to the initial time and the initial distribution of players the set of expected rewards of the representative player corresponding to solutions of mean field game. This mapping can be regarded as a value multifunction. We obtain the sufficient condition for a multifunction to be a value multifunction. It states that if a multifunction is viable with respect to the dynamics generated by the original mean field game, then it is a value multifunction. Furthermore, the infinitesimal variant of this condition is derived. © EDP Sciences, SMAI 2020.en
dc.description.sponsorshipThe research is supported by RFBR (grant N 17-01-00069).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherEDP Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceControl Optimisation Calc. Var.2
dc.sourceESAIM - Control, Optimisation and Calculus of Variationsen
dc.subjectMEAN FIELD GAMESen
dc.subjectSET-VALUED DERIVATIVEen
dc.subjectVALUE MULTIFUCNTIONen
dc.subjectVIABILITY PROPERTYen
dc.subjectCONTROL ENGINEERINGen
dc.subjectOPTIMIZATIONen
dc.subjectFIRST ORDERen
dc.subjectINITIAL TIMEen
dc.subjectMAIN OBJECTSen
dc.subjectMEAN FIELD GAMESen
dc.subjectMAPPINGen
dc.titleViability analysis of the first-order mean field gamesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1051/cocv/2019013-
dc.identifier.scopus85084109037-
local.contributor.employeeAverboukh, Y., Krasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskoi Str., Yekaterinburg, Russian Federation, Ural Federal University, 19 Mira Str., Yekaterinburg, Russian Federation
local.volume26-
dc.identifier.wos000529867900001-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, 16, S. Kovalevskoi Str., Yekaterinburg, Russian Federation
local.contributor.departmentUral Federal University, 19 Mira Str., Yekaterinburg, Russian Federation
local.identifier.pure263636e0-5fde-4b45-9a5b-3bce150f8e24uuid
local.identifier.pure12908888-
local.description.order2019013-
local.identifier.eid2-s2.0-85084109037-
local.fund.rffi17-01-00069-
local.identifier.wosWOS:000529867900001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85084109037.pdf419,91 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.