Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101502
Title: SrCu2(BO3)2 under pressure: A first-principles study
Authors: Badrtdinov, D. I.
Tsirlin, A. A.
Mazurenko, V. V.
Mila, F.
Issue Date: 2020
Publisher: American Physical Society
Citation: SrCu2(BO3)2 under pressure: A first-principles study / D. I. Badrtdinov, A. A. Tsirlin, V. V. Mazurenko, et al. — DOI 10.1103/PhysRevB.101.224424 // Physical Review B. — 2020. — Vol. 101. — Iss. 22. — P. -.
Abstract: Using density-functional theory (DFT) band-structure calculations, we study the crystal structure, lattice dynamics, and magnetic interactions in the Shastry-Sutherland magnet SrCu2(BO3)2 under pressure, concentrating on experimentally relevant pressures up to 4 GPa. We first check that a ferromagnetic spin alignment shortens the nearest-neighbor Cu-Cu distance and reduces the Cu-O-Cu angle compared to the state with the antiferromagnetic spin alignment in the dimers, in qualitative agreement with the structural changes observed at ambient pressure as a function of temperature and applied field. Next, we determine the optimal crystal structures corresponding to the magnetic structures consistent with, respectively, the dimer phase realized at ambient pressure, the Neél ordered phase realized at high pressure, and two candidates for the intermediate phase with two types of dimers and different stackings. For each phase, we performed a systematic study as a function of pressure, and we determined the exchange interactions and the frequencies of several experimentally relevant phonon modes. In the dimer phase, the ratio of the inter-to intradimer couplings is found to increase with pressure, in qualitative agreement with various experiments. This increase is mostly due to the decrease of the intradimer coupling due to the reduction of the Cu-O-Cu angle under pressure. The phonon frequency of the pantograph mode is also found to increase with pressure, in qualitative agreement with recent Raman experiments. In the Neél phase, the frequency of the pantograph mode is larger than the extrapolated value from the dimer phase, again in agreement with the experimental results, and accordingly the intradimer coupling is smaller than the extrapolated value from the dimer phase. Finally, all tendencies inside the candidate intermediate phases are thoroughly worked out, including specific predictions for some Raman active phonon modes that could be used to pin down the nature of the intermediate phase. © 2020 American Physical Society.
Keywords: BINARY ALLOYS
CALCULATIONS
CRYSTAL LATTICES
CRYSTALLOGRAPHY
DIMERS
EXTRAPOLATION
LATTICE THEORY
PANTOGRAPHS
PHONONS
STRONTIUM COMPOUNDS
STRUCTURAL OPTIMIZATION
ANTIFERROMAGNETIC SPINS
BAND STRUCTURE CALCULATION
FERROMAGNETIC SPIN ALIGNMENT
FIRST-PRINCIPLES STUDY
FUNCTION OF PRESSURE
INTERMEDIATE PHASIS
MAGNETIC INTERACTIONS
RAMAN-ACTIVE PHONON
DENSITY FUNCTIONAL THEORY
URI: http://hdl.handle.net/10995/101502
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85086993519
PURE ID: 13140725
158c2861-bce9-4501-adfd-6f31a93882db
ISSN: 24699950
DOI: 10.1103/PhysRevB.101.224424
metadata.dc.description.sponsorship: D.I.B. acknowledges the Russian Federation Presidential scholarship for providing travel support to visit EPFL. The work of V.V.M. is supported by the Russian Science Foundation, Grant No. 18-12-00185. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. We acknowledge A. Zheludev and S. Bettler (ETH Zürih) for fruitful discussions and sharing Raman scattering data under pressure prior to publication. The calculations have been performed using the facilities of the Scientific IT and Application Support Center of EPFL. F.M. acknowledges the support of the Swiss National Science Foundation.
RSCF project card: 18-12-00185
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85086993519.pdf4,78 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.