Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101490
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSolovyova, A. Y.en
dc.contributor.authorKuznetsov, A. A.en
dc.contributor.authorElfimova, E. A.en
dc.date.accessioned2021-08-31T14:57:39Z-
dc.date.available2021-08-31T14:57:39Z-
dc.date.issued2020-
dc.identifier.citationSolovyova A. Y. Interparticle correlations in the simple cubic lattice of ferroparticles: Theory and computer simulations / A. Y. Solovyova, A. A. Kuznetsov, E. A. Elfimova. — DOI 10.1016/j.physa.2020.124923 // Physica A: Statistical Mechanics and its Applications. — 2020. — Vol. 558. — 124923.en
dc.identifier.issn3784371-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087991633&doi=10.1016%2fj.physa.2020.124923&partnerID=40&md5=b15bcba337080a0d78d13337f557489e
dc.identifier.otherhttp://arxiv.org/pdf/2002.01721m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101490-
dc.description.abstractAnisotropic interparticle correlations in the simple cubic lattice of single-domain ferroparticles (SCLF) are studied using both theory and computer simulation. The theory is based on the Helmholtz free energy expansion like classical virial series up to the second virial coefficient. The analytical formula for the Helmholtz free energy is incorporated in a logarithmic form to minimize the effects of series truncation. The new theoretical approach, including discrete summation over lattice nodes coordinates, is compared critically against the classical virial expansion of the Helmholtz free energy for the dipolar hard sphere fluid; the main differences between the Helmholtz free energy of SCLF and dipolar hard sphere fluid are discussed. The theoretical results for the Helmholtz free energy, the magnetization, and the initial magnetic susceptibility of the SCLF are compared against Molecular Dynamic simulation data. In all cases, theoretical predictions using logarithmic form of the Helmholtz free energy are seen to be superior, but they only have an applicability range of the effective dipolar coupling constant λe<1.5. For highest values of λe, the structural transition of the magnetic dipoles in SCLF is observed in Molecular Dynamic simulation. It has been shown that for λe≳2, an antiferromagnetic order appears in the system. © 2020en
dc.description.sponsorshipThe reported study was funded by RFBR , project number 20-02-00358 . AYS and EAE acknowledged Prof. Philip Camp for his advice and useful discussions.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourcePhys A Stat Mech Appl2
dc.sourcePhysica A: Statistical Mechanics and its Applicationsen
dc.subjectCONFIGURATIONAL INTEGRALen
dc.subjectDIPOLE INTERACTIONSen
dc.subjectHELMHOLTZ FREE ENERGYen
dc.subjectMAGNETIZATIONen
dc.subjectSINGLE-DOMAIN FERROPARTICLESen
dc.subjectVIRAL COEFFICIENTSen
dc.subjectEXPANSIONen
dc.subjectFLUIDSen
dc.subjectLATTICE THEORYen
dc.subjectMAGNETIC SUSCEPTIBILITYen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectANALYTICAL FORMULASen
dc.subjectANTIFERROMAGNETIC ORDERINGSen
dc.subjectDIPOLAR HARD SPHERESen
dc.subjectINTER-PARTICLE CORRELATIONSen
dc.subjectSECOND VIRIAL COEFFICIENTSen
dc.subjectSIMPLE-CUBIC LATTICESen
dc.subjectSTRUCTURAL TRANSITIONSen
dc.subjectTHEORETICAL APPROACHen
dc.subjectFREE ENERGYen
dc.titleInterparticle correlations in the simple cubic lattice of ferroparticles: Theory and computer simulationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.physa.2020.124923-
dc.identifier.scopus85087991633-
local.contributor.employeeSolovyova, A.Y., Ural Mathematical Center, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.contributor.employeeKuznetsov, A.A., Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation, Physics of Phase Transitions Department, Perm State University, 15 Bukireva St., Perm, 614990, Russian Federation
local.contributor.employeeElfimova, E.A., Ural Mathematical Center, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.volume558-
dc.identifier.wos000567089400011-
local.contributor.departmentUral Mathematical Center, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.contributor.departmentInstitute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg, 620000, Russian Federation
local.contributor.departmentPhysics of Phase Transitions Department, Perm State University, 15 Bukireva St., Perm, 614990, Russian Federation
local.identifier.pure38e3f3e3-7109-479b-8c65-85763c657184uuid
local.identifier.pure13384043-
local.description.order124923-
local.identifier.eid2-s2.0-85087991633-
local.fund.rffi20-02-00358-
local.identifier.wosWOS:000567089400011-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85087991633.pdf1,03 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.