Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101487
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Panov, Y. D. | en |
dc.date.accessioned | 2021-08-31T14:57:38Z | - |
dc.date.available | 2021-08-31T14:57:38Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Panov Y. D. Local distributions of the 1D dilute Ising model / Y. D. Panov. — DOI 10.1016/j.jmmm.2020.167224 // Journal of Magnetism and Magnetic Materials. — 2020. — Vol. 514. — 167224. | en |
dc.identifier.issn | 3048853 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088391170&doi=10.1016%2fj.jmmm.2020.167224&partnerID=40&md5=e2d9085b0ad4218cc7d027b7666566e7 | |
dc.identifier.other | http://arxiv.org/pdf/2007.04127 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101487 | - |
dc.description.abstract | The local distributions of the one-dimensional dilute annealed Ising model with charged impurities are studied. Explicit expressions are obtained for the pair distribution functions and correlation lengths, and their low-temperature asymptotic behavior is explored depending on the concentration of impurities. For a more detailed consideration of the ordering processes, we study local distributions. Based on the Markov property of the dilute Ising chain, we obtain an explicit expression for the probability of any finite sequence and find a geometric probability distribution for the lengths of sequences consisting of repeating blocks. An analysis of distributions shows that the critical behavior of the spin correlation length is defined by ferromagnetic or antiferromagnetic sequences, while the critical behavior of the impurity correlation length is defined by the sequences of impurities or by the charge-ordered sequences. For the dilute Ising chain, there are no other repeating sequences whose mean length diverges at zero temperature. While both the spin correlation and the impurity correlation lengths can diverge only at zero temperature, the ordering processes result in a maximum of the specific heat at finite temperature defined by the maximum rate of change of the impurity-spin pairs concentration. A simple approximate equation is found for this temperature. We show that the non-ordered dilute Ising chains correspond to the regular Markov chains, while various orderings generate the irregular Markov chains of different types. © 2020 Elsevier B.V. | en |
dc.description.sponsorship | This work was supported by Program 211 of the Government of the Russian Federation, Agreement 02.A03.21.0006, and the Ministry of Education and Science of the Russian Federation, project FEUZ-2020-0054. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Elsevier B.V. | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | J Magn Magn Mater | 2 |
dc.source | Journal of Magnetism and Magnetic Materials | en |
dc.subject | CORRELATION FUNCTIONS | en |
dc.subject | DILUTE ISING CHAIN | en |
dc.subject | LOCAL DISTRIBUTIONS | en |
dc.subject | MARKOV CHAIN | en |
dc.subject | ANTIFERROMAGNETISM | en |
dc.subject | DISTRIBUTION FUNCTIONS | en |
dc.subject | GEOGRAPHICAL DISTRIBUTION | en |
dc.subject | ISING MODEL | en |
dc.subject | SPECIFIC HEAT | en |
dc.subject | TEMPERATURE | en |
dc.subject | ANTIFERROMAGNETICS | en |
dc.subject | APPROXIMATE EQUATION | en |
dc.subject | ASYMPTOTIC BEHAVIORS | en |
dc.subject | CORRELATION LENGTHS | en |
dc.subject | FINITE TEMPERATURES | en |
dc.subject | LOCAL DISTRIBUTIONS | en |
dc.subject | PAIR DISTRIBUTION FUNCTIONS | en |
dc.subject | REGULAR MARKOV CHAIN | en |
dc.subject | MARKOV CHAINS | en |
dc.title | Local distributions of the 1D dilute Ising model | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1016/j.jmmm.2020.167224 | - |
dc.identifier.scopus | 85088391170 | - |
local.contributor.employee | Panov, Y.D., Ural Federal University, Institute of Natural Sciences and Mathematics, 620002 19 Mira street, Ekaterinburg, Russian Federation | |
local.volume | 514 | - |
dc.identifier.wos | 000571177700001 | - |
local.contributor.department | Ural Federal University, Institute of Natural Sciences and Mathematics, 620002 19 Mira street, Ekaterinburg, Russian Federation | |
local.identifier.pure | ae6714c2-0f7d-4bed-ac37-00fd3dc1cc6d | uuid |
local.identifier.pure | 13383997 | - |
local.description.order | 167224 | - |
local.identifier.eid | 2-s2.0-85088391170 | - |
local.identifier.wos | WOS:000571177700001 | - |
local.fund.feuz | FEUZ-2020-0054 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85088391170.pdf | 1,66 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.