Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101445
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Afanasenkau, D. | en |
dc.contributor.author | Kalinina, D. | en |
dc.contributor.author | Lyakhovetskii, V. | en |
dc.contributor.author | Tondera, C. | en |
dc.contributor.author | Gorsky, O. | en |
dc.contributor.author | Moosavi, S. | en |
dc.contributor.author | Pavlova, N. | en |
dc.contributor.author | Merkulyeva, N. | en |
dc.contributor.author | Kalueff, A. V. | en |
dc.contributor.author | Minev, I. R. | en |
dc.contributor.author | Musienko, P. | en |
dc.date.accessioned | 2021-08-31T14:57:20Z | - |
dc.date.available | 2021-08-31T14:57:20Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces / D. Afanasenkau, D. Kalinina, V. Lyakhovetskii, et al. — DOI 10.1038/s41551-020-00615-7 // Nature Biomedical Engineering. — 2020. — Vol. 4. — Iss. 10. — P. 1010-1022. | en |
dc.identifier.issn | 2157846X | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091197760&doi=10.1038%2fs41551-020-00615-7&partnerID=40&md5=89fd6bf8ab303b9534d4680daafb2010 | |
dc.identifier.other | https://eprints.whiterose.ac.uk/172590/1/Author%20accepted%20manuscript%20NeuroPrint.pdf | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101445 | - |
dc.description.abstract | Neuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability. This technology might enable personalized bioelectronics for neuroprosthetic applications. © 2020, The Author(s), under exclusive licence to Springer Nature Limited. | en |
dc.description.sponsorship | We acknowledge funding from the following sources: the European Research Council (804005; IntegraBrain), Saint-Petersburg State University (project 51134206; funding to O.G. and N.M. for animal facility and biocompatibility studies, and validation of the implants on in vivo models), Technische Universität Dresden, the Russian Foundation for Basic Research (grants 20-015-00568-a (for the urodynamic study) and 18-33-20062-mol_a_ved (for developing the optimal electrode array configuration)), Deutsche Forschungsgemeinschaft (MI 2117/1-1) and the Volkswagen Foundation (Freigeist 91 690). We thank D. E. Korzhevskiy (immunohistochemistry), Y. I. Sysoev (zebrafish model), A. V. Goriainova (functional tests) and T. Kurth (electron microscopy) for help and expertise. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | Nature Research | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Nat. Biomed. Eng. | 2 |
dc.source | Nature Biomedical Engineering | en |
dc.subject | BIOCOMPATIBILITY | en |
dc.subject | CHEMICAL ACTIVATION | en |
dc.subject | ELECTRODES | en |
dc.subject | INK JET PRINTERS | en |
dc.subject | MEDICINE | en |
dc.subject | SILICONES | en |
dc.subject | BIO-ELECTRONIC INTERFACE | en |
dc.subject | CLINICAL MEDICINE | en |
dc.subject | ELECTRODE ARRAYS | en |
dc.subject | ELECTRODE SURFACES | en |
dc.subject | EXPERIMENTAL MODELS | en |
dc.subject | INK-JET DEPOSITION | en |
dc.subject | LONG-TERM INTEGRATION | en |
dc.subject | NEUROMUSCULAR SYSTEMS | en |
dc.subject | INK | en |
dc.subject | BIOMATERIAL | en |
dc.subject | INK | en |
dc.subject | NANOWIRE | en |
dc.subject | SILASTIC | en |
dc.subject | SILICONE | en |
dc.subject | TOOTH CEMENT | en |
dc.subject | BIOMATERIAL | en |
dc.subject | ANIMAL EXPERIMENT | en |
dc.subject | ANIMAL TISSUE | en |
dc.subject | ARTICLE | en |
dc.subject | BIOCOMPATIBILITY | en |
dc.subject | BIOPRINTING | en |
dc.subject | CAT | en |
dc.subject | CYCLIC VOLTAMMETRY | en |
dc.subject | DURA MATER | en |
dc.subject | ELECTRIC POTENTIAL | en |
dc.subject | ELECTROCORTICOGRAPHY | en |
dc.subject | ELECTROMYOGRAM | en |
dc.subject | FIELD EMISSION SCANNING ELECTRON MICROSCOPY | en |
dc.subject | IMAGE ANALYSIS | en |
dc.subject | IMMUNOHISTOCHEMISTRY | en |
dc.subject | IMPEDANCE SPECTROSCOPY | en |
dc.subject | LOCOMOTION | en |
dc.subject | MALE | en |
dc.subject | MUSCLE CONTRACTION | en |
dc.subject | NERVE CELL NETWORK | en |
dc.subject | NERVOUS SYSTEM INFLAMMATION | en |
dc.subject | NEUROANATOMY | en |
dc.subject | NEUROMODULATION | en |
dc.subject | NEUROMUSCULAR SYSTEM | en |
dc.subject | NEUROPHYSIOLOGY | en |
dc.subject | NONHUMAN | en |
dc.subject | PLASMA GAS | en |
dc.subject | RAPID PROTOTYPING | en |
dc.subject | RAT | en |
dc.subject | SOFTWARE | en |
dc.subject | SPINAL CORD STIMULATION | en |
dc.subject | VISCOSITY | en |
dc.subject | ZEBRA FISH | en |
dc.subject | ANIMAL | en |
dc.subject | BLADDER | en |
dc.subject | DEVICES | en |
dc.subject | ELECTROSTIMULATION | en |
dc.subject | EQUIPMENT DESIGN | en |
dc.subject | FEMALE | en |
dc.subject | NEUROMUSCULAR MONITORING | en |
dc.subject | PHYSIOLOGY | en |
dc.subject | PROCEDURES | en |
dc.subject | PROSTHESES AND ORTHOSES | en |
dc.subject | SCIATIC NERVE | en |
dc.subject | SPINAL CORD | en |
dc.subject | THREE DIMENSIONAL PRINTING | en |
dc.subject | WISTAR RAT | en |
dc.subject | ANIMALS | en |
dc.subject | BIOCOMPATIBLE MATERIALS | en |
dc.subject | CATS | en |
dc.subject | DIELECTRIC SPECTROSCOPY | en |
dc.subject | ELECTRIC STIMULATION | en |
dc.subject | EQUIPMENT DESIGN | en |
dc.subject | FEMALE | en |
dc.subject | INK | en |
dc.subject | MALE | en |
dc.subject | NEUROMUSCULAR MONITORING | en |
dc.subject | PRINTING, THREE-DIMENSIONAL | en |
dc.subject | PROSTHESES AND IMPLANTS | en |
dc.subject | RATS, WISTAR | en |
dc.subject | SCIATIC NERVE | en |
dc.subject | SPINAL CORD | en |
dc.subject | URINARY BLADDER | en |
dc.subject | ZEBRAFISH | en |
dc.title | Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1038/s41551-020-00615-7 | - |
dc.identifier.scopus | 85091197760 | - |
local.contributor.employee | Afanasenkau, D., Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany | |
local.contributor.employee | Kalinina, D., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation | |
local.contributor.employee | Lyakhovetskii, V., Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.contributor.employee | Tondera, C., Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany | |
local.contributor.employee | Gorsky, O., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.contributor.employee | Moosavi, S., Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany | |
local.contributor.employee | Pavlova, N., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation | |
local.contributor.employee | Merkulyeva, N., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.contributor.employee | Kalueff, A.V., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation, Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.employee | Minev, I.R., Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom | |
local.contributor.employee | Musienko, P., Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation, Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.description.firstpage | 1010 | - |
local.description.lastpage | 1022 | - |
local.issue | 10 | - |
local.volume | 4 | - |
dc.identifier.wos | 000571688300001 | - |
local.contributor.department | Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany | |
local.contributor.department | Institute of Translational Biomedicine, Saint-Petersburg State University, Saint-Petersburg, Russian Federation | |
local.contributor.department | Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russian Federation | |
local.contributor.department | Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.contributor.department | Ural Federal University, Yekaterinburg, Russian Federation | |
local.contributor.department | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom | |
local.contributor.department | Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the Russian Federation, Saint-Petersburg, Russian Federation | |
local.identifier.pure | 5ce8e2ea-b42f-4b8f-a0dd-51f0c01cbd34 | uuid |
local.identifier.pure | 20126590 | - |
local.identifier.eid | 2-s2.0-85091197760 | - |
local.fund.rffi | 20-015-00568 | - |
local.fund.rffi | 18-33-20062 | - |
local.identifier.wos | WOS:000571688300001 | - |
local.identifier.pmid | 32958898 | - |
Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85091197760.pdf | 3,49 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.