Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101404
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorEfimov, P.en
dc.contributor.authorChertok, A.en
dc.contributor.authorBoytsov, L.en
dc.contributor.authorBraslavski, P.en
dc.date.accessioned2021-08-31T14:57:01Z-
dc.date.available2021-08-31T14:57:01Z-
dc.date.issued2020-
dc.identifier.citationSberQuAD – Russian Reading Comprehension Dataset: Description and Analysis / P. Efimov, A. Chertok, L. Boytsov, et al. — DOI 10.1007/978-3-030-58219-7_1 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2020. — Vol. 12260 LNCS. — P. 3-15.en
dc.identifier.isbn9783030582180-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85092191483&doi=10.1007%2f978-3-030-58219-7_1&partnerID=40&md5=1c411606272755f26728d22a1c744b6d
dc.identifier.otherhttp://arxiv.org/pdf/1912.09723m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101404-
dc.description.abstractThe paper presents SberQuAD – a large Russian reading comprehension (RC) dataset created similarly to English SQuAD. SberQuAD contains about 50K question-paragraph-answer triples and is seven times larger compared to the next competitor. We provide its description, thorough analysis, and baseline experimental results. We scrutinized various aspects of the dataset that can have impact on the task performance: question/paragraph similarity, misspellings in questions, answer structure, and question types. We applied five popular RC models to SberQuAD and analyzed their performance. We believe our work makes an important contribution to research in multilingual question answering. © 2020, Springer Nature Switzerland AG.en
dc.description.sponsorshipWe thank Peter Romov, Vladimir Suvorov, and Ekaterina Arte-mova (Chernyak) for providing us with details about SberQuAD preparation. We also thank Natasha Murashkina for initial data processing. PB acknowledges support by Ural Mathematical Center under agreement No. 075-02-2020-1537/1 with the Ministry of Science and Higher Education of the Russian Federation.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Science and Business Media Deutschland GmbHen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectEVALUATIONen
dc.subjectMULTILINGUAL QUESTION ANSWERINGen
dc.subjectREADING COMPREHENSIONen
dc.subjectRUSSIAN LANGUAGE RESOURCESen
dc.subjectASSOCIATION REACTIONSen
dc.subjectNATURAL LANGUAGE PROCESSING SYSTEMSen
dc.subjectQUESTION ANSWERINGen
dc.subjectQUESTION TYPEen
dc.subjectRC MODELSen
dc.subjectREADING COMPREHENSIONen
dc.subjectTASK PERFORMANCEen
dc.subjectLARGE DATASETen
dc.titleSberQuAD – Russian Reading Comprehension Dataset: Description and Analysisen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-030-58219-7_1-
dc.identifier.scopus85092191483-
local.contributor.employeeEfimov, P., St. Petersburg State University, St. Petersburg, Russian Federation
local.contributor.employeeChertok, A., Sberbank, Moscow, Russian Federation
local.contributor.employeeBoytsov, L., Pittsburgh, PA, United States
local.contributor.employeeBraslavski, P., Ural Federal University, Yekaterinburg, Russian Federation, JetBrains Research, St. Petersburg, Russian Federation
local.description.firstpage3-
local.description.lastpage15-
local.volume12260 LNCS-
local.contributor.departmentSt. Petersburg State University, St. Petersburg, Russian Federation
local.contributor.departmentSberbank, Moscow, Russian Federation
local.contributor.departmentPittsburgh, PA, United States
local.contributor.departmentUral Federal University, Yekaterinburg, Russian Federation
local.contributor.departmentJetBrains Research, St. Petersburg, Russian Federation
local.identifier.pure14123133-
local.identifier.pure5932df21-7a79-4285-ae44-5931887a552duuid
local.identifier.eid2-s2.0-85092191483-
local.fund.umc075-02-2020-1537-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85092191483.pdf322,02 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.