Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/101380
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Gomoyunov, M. I. | en |
dc.date.accessioned | 2021-08-31T14:53:42Z | - |
dc.date.available | 2021-08-31T14:53:42Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Gomoyunov M. I. On representation formulas for solutions of linear differential equations with Caputo fractional derivatives / M. I. Gomoyunov. — DOI 10.1515/fca-2020-0058 // Fractional Calculus and Applied Analysis. — 2020. — Vol. 23. — Iss. 4. — P. 1141-1160. | en |
dc.identifier.issn | 13110454 | - |
dc.identifier.other | Final | 2 |
dc.identifier.other | All Open Access, Green | 3 |
dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092916604&doi=10.1515%2ffca-2020-0058&partnerID=40&md5=26fc669e69ba1a0d4af8bf1887c36593 | |
dc.identifier.other | http://arxiv.org/pdf/1908.08319 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/101380 | - |
dc.description.abstract | In the paper, a linear differential equation with variable coefficients and a Caputo fractional derivative is considered. For this equation, a Cauchy problem is studied, when an initial condition is given at an intermediate point that does not necessarily coincide with the initial point of the fractional differential operator. A detailed analysis of basic properties of the fundamental solution matrix is carried out. In particular, the Hölder continuity of this matrix with respect to both variables is proved, and its dual definition is given. Based on this, two representation formulas for the solution of the Cauchy problem are proposed and justified. © 2020 Diogenes Co., Sofia. | en |
dc.description.sponsorship | This work was supported by RSF, Project No 19-11-00105. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | De Gruyter Open Ltd | en |
dc.relation | info:eu-repo/grantAgreement/RSF//19-11-00105 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | Fractional Calc. Appl. Anal. | 2 |
dc.source | Fractional Calculus and Applied Analysis | en |
dc.subject | AND PHRASES: LINEAR FRACTIONAL DIFFERENTIAL EQUATION | en |
dc.subject | FUNDAMENTAL SOLUTION MATRIX | en |
dc.subject | REPRESENTATION FORMULA | en |
dc.title | On representation formulas for solutions of linear differential equations with Caputo fractional derivatives | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.1515/fca-2020-0058 | - |
dc.identifier.scopus | 85092916604 | - |
local.contributor.employee | Gomoyunov, M.I., Krasovskii Institute of Mathematics and Mechanics Ural Branch of, Russian Academy of Sciences, S. Kovalevskaya Str., Block 16, Ekaterinburg, 620990, Russian Federation, Ural Federal University, Mira Str., Block 32, Ekaterinburg, 620002, Russian Federation | |
local.description.firstpage | 1141 | - |
local.description.lastpage | 1160 | - |
local.issue | 4 | - |
local.volume | 23 | - |
dc.identifier.wos | 000591377100006 | - |
local.contributor.department | Krasovskii Institute of Mathematics and Mechanics Ural Branch of, Russian Academy of Sciences, S. Kovalevskaya Str., Block 16, Ekaterinburg, 620990, Russian Federation | |
local.contributor.department | Ural Federal University, Mira Str., Block 32, Ekaterinburg, 620002, Russian Federation | |
local.identifier.pure | 11461f08-081e-48d6-b1b0-cbb087b45a34 | uuid |
local.identifier.pure | 14148798 | - |
local.identifier.eid | 2-s2.0-85092916604 | - |
local.fund.rsf | 19-11-00105 | - |
local.identifier.wos | WOS:000591377100006 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85092916604.pdf | 199,42 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.