Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.urfu.ru/handle/10995/95293
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNikiforova, Tatiana M.en
dc.date.accessioned2021-01-28T10:47:56Z-
dc.date.available2021-01-28T10:47:56Z-
dc.date.issued2020-
dc.identifier.citationNikiforova T. M. Inequalities for Algebraic Polynomials on an Ellipse / Tatiana M. Nikiforova. — DOI 10.15826/umj.2020.2.009. — Text : electronic // Ural Mathematical Journal. — 2020. — Volume 6. — № 2. — С. 87-94.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/95293-
dc.description.abstractThe paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci ±1 of the derivative of an algebraic polynomial with real coefficients normalized on the segment [−1,1].en
dc.description.sponsorshipThe work was performed as a part of research conducted in the Ural Mathematical Center.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2020. Volume 6. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectPOLYNOMIALen
dc.subjectCHEBYSHEV POLYNOMIALSen
dc.subjectELLIPSEen
dc.subjectSEGMENTen
dc.subjectDERIVATIVE OF A POLYNOMIALen
dc.subjectUNIFORM NORMen
dc.titleInequalities for Algebraic Polynomials on an Ellipseen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2020.2.009-
local.description.firstpage87-
local.description.lastpage94-
local.issue2-
local.volume6-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2020_6_2_87-94.pdf120,77 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons