Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93141
Название: | Identities in Brandt Semigroups, Revisited |
Авторы: | Volkov, M. V. |
Дата публикации: | 2019 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Volkov M. V. Identities in Brandt Semigroups, Revisited / M. V. Volkov. — DOI 10.15826/umj.2019.2.008. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 80-93. |
Аннотация: | We present a new proof for the main claim made in the author's paper "On the identity bases of Brandt semigroups" (Ural. Gos. Univ. Mat. Zap., 14, no.1 (1985), 38–42); this claim provides an identity basis for an arbitrary Brandt semigroup over a group of finite exponent. We also show how to fill a gap in the original proof of the claim in loc. cit. |
Ключевые слова: | BRANDT SEMIGROUP SEMIGROUP IDENTITY IDENTITY BASIS FINITE BASIS PROBLEM |
URI: | http://elar.urfu.ru/handle/10995/93141 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2019.2.008 |
Сведения о поддержке: | This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00551, the Ministry of Science and Higher Education of the Russian Federation, project no. 1.580.2016, and the Competitiveness Program of Ural Federal University. The author thanks Dr. Jiˇr´ıKad’ourek who carefully examined a number of publications of the 1980s, a notable “Sturm und Drang” period in the theory of semigroup varieties (and corrected inaccuracies in some of these publications, see, e.g., [11]). In the course of his critical studies, Dr. Kad’ourek observed a gap in [30] and drew the author’s attention to the fact that this gap had not been properly discussed in the literature. The present paper is a response to this fair remark. |
Источники: | Ural Mathematical Journal. 2019. Volume 5. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2019_5_2_80-93.pdf | 223,33 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons