Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93141
Название: Identities in Brandt Semigroups, Revisited
Авторы: Volkov, M. V.
Дата публикации: 2019
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Volkov M. V. Identities in Brandt Semigroups, Revisited / M. V. Volkov. — DOI 10.15826/umj.2019.2.008. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 2. — P. 80-93.
Аннотация: We present a new proof for the main claim made in the author's paper "On the identity bases of Brandt semigroups" (Ural. Gos. Univ. Mat. Zap., 14, no.1 (1985), 38–42); this claim provides an identity basis for an arbitrary Brandt semigroup over a group of finite exponent. We also show how to fill a gap in the original proof of the claim in loc. cit.
Ключевые слова: BRANDT SEMIGROUP
SEMIGROUP IDENTITY
IDENTITY BASIS
FINITE BASIS PROBLEM
URI: http://elar.urfu.ru/handle/10995/93141
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2019.2.008
Сведения о поддержке: This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00551, the Ministry of Science and Higher Education of the Russian Federation, project no. 1.580.2016, and the Competitiveness Program of Ural Federal University.
The author thanks Dr. Jiˇr´ıKad’ourek who carefully examined a number of publications of the 1980s, a notable “Sturm und Drang” period in the theory of semigroup varieties (and corrected inaccuracies in some of these publications, see, e.g., [11]). In the course of his critical studies, Dr. Kad’ourek observed a gap in [30] and drew the author’s attention to the fact that this gap had not been properly discussed in the literature. The present paper is a response to this fair remark.
Источники: Ural Mathematical Journal. 2019. Volume 5. № 2
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_2_80-93.pdf223,33 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons