Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93135
Название: Regularization of Pontryagin Maximum Principle in Optimal Control of Distributed Systems
Авторы: Sumin, M. I.
Дата публикации: 2016
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Sumin M. I. Regularization of Pontryagin Maximum Principle in Optimal Control of Distributed Systems / M. I. Sumin. — DOI 10.15826/umj.2016.2.008. — Text : electronic // Ural Mathematical Journal. — 2016. — Volume 2. — № 2. — P. 72-86.
Аннотация: This article is devoted to studying dual regularization method applied to parametric convex optimal control problem of controlled third boundary–value problem for parabolic equation with boundary control and with equality and inequality pointwise state constraints. This dual regularization method yields the corresponding necessary and sufficient conditions for minimizing sequences, namely, the stable, with respect to perturbation of input data, sequential or, in other words, regularized Lagrange principle in nondifferential form and Pontryagin maximum principle for the original problem. Regardless of the fact that the stability or instability of the original optimal control problem, they stably generate a minimizing approximate solutions in the sense of J. Warga for it. For this reason, we can interpret these regularized Lagrange principle and Pontryagin maximum principle as tools for direct solving unstable optimal control problems and reducing to them unstable inverse problems.
Ключевые слова: OPTIMAL BOUNDARY CONTROL
PARABOLIC EQUATION
MINIMIZING SEQUENCE
DUAL REGULARIZATION
STABILITY
LAGRANGE PRINCIPLE
PONTRYAGIN MAXIMUM PRINCIPLE
URI: http://elar.urfu.ru/handle/10995/93135
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2016.2.008
Сведения о поддержке: This work was supported by the Russian Foundation for Basic Research (project no. 15-47-02294-r_povolzh'e_ - a), by the Ministry of Education and Science of the Russian Federation within the framework of project part of state tasks in 2014-2016 (code no. 1727) and by the grant within the agreement of August 27, 2013 No. 02.B.49.21.0003 between the Ministry of Education and Science of the Russian Federation and Lobachevskii State University of Nizhnii Novgorod.
Источники: Ural Mathematical Journal. 2016. Volume 2. № 2
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2016_2_2_72-86.pdf145,84 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons