Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93128
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShaburov, A. A.en
dc.date.accessioned2020-10-30T12:54:08Z-
dc.date.available2020-10-30T12:54:08Z-
dc.date.issued2018-
dc.identifier.citationShaburov A. A. Asymptotic Expansion of a Solution for the Singularly Perturbed Optimal Control Problem with a Convex Integral Quality Index and Smooth Control Constraints / A. A. Shaburov. — DOI 10.15826/umj.2018.1.006. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 1. — P. 63-73.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93128-
dc.description.abstractThe paper deals with the problem of optimal control with a convex integral quality index for a linear steady-state control system in the class of piecewise continuous controls with smooth control constraints. In a general case, to solve such a problem, the Pontryagin maximum principle is applied as the necessary and sufficient optimum condition. The main difference from the preceding article [10] is that the terminal part of the convex integral quality index depends not only on slow, but also on fast variables. In a particular case, we derive an equation that is satisfied by an initial vector of the conjugate system. Then this equation is extended to the optimal control problem with the convex integral quality index for a linear system with the fast and slow variables. It is shown that the solution of the corresponding equation as ε→0 tends to the solution of an equation corresponding to the limit problem. The results obtained are applied to study a problem which describes the motion of a material point in Rn for a fixed interval of time. The asymptotics of the initial vector of the conjugate system that defines the type of optimal control is built. It is shown that the asymptotics is a power series of expansion.en
dc.description.sponsorshipThe author is very grateful to Prof. Alexey R. Danilin for the formulation of the problem and for constant attention to the work.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2018. Volume 4. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectOPTIMAL CONTROLen
dc.subjectSINGULARLY PERTURBED PROBLEMSen
dc.subjectASYMPTOTIC EXPANSIONen
dc.subjectSMALL PARAMETERen
dc.titleAsymptotic Expansion of a Solution for the Singularly Perturbed Optimal Control Problem with a Convex Integral Quality Index and Smooth Control Constraintsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2018.1.006-
local.description.firstpage63-
local.description.lastpage73-
local.issue1-
local.volume4-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2018_4_1_63-73.pdf160,87 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons