Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93122
Название: | A Stable Method for Linear Equation in Banach Spaces with Smooth Norms |
Авторы: | Dryazhenkov, A. A. Potapov, M. M. |
Дата публикации: | 2018 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Dryazhenkov A. A. A Stable Method for Linear Equation in Banach Spaces with Smooth Norms / A. A. Dryazhenkov, M. M. Potapov. — DOI 10.15826/umj.2018.2.007. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 2. — P. 56-68. |
Аннотация: | A stable method for numerical solution of a linear operator equation in reflexive Banach spaces is proposed. The operator and the right-hand side of the equation are assumed to be known approximately. The corresponding error levels may remain unknown. Approximate operators and their conjugate ones must possess the property of strong pointwise convergence. The exact normal solution is assumed to be sourcewise representable and some upper estimate for the norm of its source element must be known. The norm in the Banach space of solutions is supposed to satisfy the following smoothness-type condition: some function of the norm must be differentiable. Under these conditions a stability of the method with respect to nonuniform perturbations in operator is shown and the strong convergence to the normal solution is proved. A boundary control problem for the one-dimensional wave equation is considered as an example of possible application. The results of the model numerical experiments are presented. |
Ключевые слова: | LINEAR OPERATOR EQUATION BANACH SPACE NUMERICAL SOLUTION STABLE METHOD SOURCEWISE REPRESENTABILITY WAVE EQUATION |
URI: | http://elar.urfu.ru/handle/10995/93122 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2018.2.007 |
Сведения о поддержке: | This work was supported by the grant of Russian Science Foundation (project 14-11-00539). |
Карточка проекта РНФ: | 14-11-00539 |
Источники: | Ural Mathematical Journal. 2018. Volume 4. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2018_4_2_56-68.pdf | 300,43 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons