Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93121
Название: | A Numerical Technique for the Solution of General Eighth Order Boundary Value Problems: a Finite Difference Method |
Авторы: | Pandey, P. K. |
Дата публикации: | 2018 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Pandey P. K. A Numerical Technique for the Solution of General Eighth Order Boundary Value Problems: a Finite Difference Method / P. K. Pandey. — DOI 10.15826/umj.2018.1.005. — Text : electronic // Ural Mathematical Journal. — 2018. — Volume 4. — № 1. — P. 56-62. |
Аннотация: | In this article, we present a novel finite difference method for the numerical solution of the eighth order boundary value problems in ordinary differential equations. We have discretized the problem by using the boundary conditions in a natural way to obtain a system of equations. Then we have solved system of equations to obtain a numerical solution of the problem. Also we obtained numerical values of derivatives of solution as a byproduct of the method. The numerical experiments show that proposed method is efficient and fourth order accurate. |
Ключевые слова: | BOUNDARY VALUE PROBLEM EIGHTH ORDER EQUATION FINITE DIFFERENCE METHOD FOURTH ORDER METHOD |
URI: | http://elar.urfu.ru/handle/10995/93121 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2018.1.005 |
Сведения о поддержке: | The author is grateful to the anonymous reviewers and editor for their valuable suggestions, which substantially improved the standard of the paper. |
Источники: | Ural Mathematical Journal. 2018. Volume 4. № 1 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2018_4_1_56-62.pdf | 108,03 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons