Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93114
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKovalevsky, A. A.en
dc.date.accessioned2020-10-30T12:54:06Z-
dc.date.available2020-10-30T12:54:06Z-
dc.date.issued2017-
dc.identifier.citationKovalevsky A. A. Convergence of Solutions of Bilateral Problems in Variable Domainsa Related Questions / A. A. Kovalevsky. — DOI 10.15826/umj.2017.2.008. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 2. — P. 51-66.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93114-
dc.description.abstractWe discuss some results on the convergence of minimizers and minimum values of integral and more general functionals on sets of functions defined by bilateral constraints in variable domains. We consider the case of regular constraints, i.e., constraints lying in the corresponding Sobolev space, and the case where the lower constraint is zero and the upper constraint is an arbitrary nonnegative function. The first case concerns a larger class of integrands and requires the positivity almost everywhere of the difference between the upper and lower constraints. In the second case, this requirement is absent. Moreover, in the latter case, the exhaustion condition of an n-dimensional domain by a sequence of n-dimensional domains plays an important role. We give a series of results involving this condition. In particular, using the exhaustion condition, we prove a certain convergence of sets of functions defined by bilateral (generally irregular) constraints in variable domains.en
dc.description.sponsorshipThis work was supported by the Program of the Ural Branch of the Russian Academy of Sciences “Current Problems in Algebra, Analysis, and the Theory of Dynamic Systems with Applications to the Control of Complex Objects” (project “Development of New Analytic, Numerical,and Asymptotic Methods for Problems of Mathematical Physics and Applications to Signal Processing”) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2017. Volume 3. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectINTEGRAL FUNCTIONALen
dc.subjectBILATERAL PROBLEMen
dc.subjectMINIMIZERen
dc.subjectMINIMUM VALUEen
dc.subjectΓ-CONVERGENCE OF FUNCTIONALSen
dc.subjectSTRONG CONNECTEDNESS OF SPACESen
dc.subjectH-CONVERGENCE OF SETSen
dc.subjectEXHAUSTION CONDITIONen
dc.titleConvergence of Solutions of Bilateral Problems in Variable Domainsa Related Questionsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2017.2.008-
local.description.firstpage51-
local.description.lastpage66-
local.issue2-
local.volume3-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2017_3_2_51-66.pdf193,38 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons