Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93109
Название: | Estimates of Reachable Sets of Control Systems with Bilinear–Quadratic Nonlinearities |
Авторы: | Filippova, T. F. Matviychuk, O. G. |
Дата публикации: | 2015 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Filippova T. F. Estimates of Reachable Sets of Control Systems with Bilinear–Quadratic Nonlinearities / T. F. Filippova, O. G. Matviychuk. — DOI 10.15826/umj.2015.1.004. — Text : electronic // Ural Mathematical Journal. — 2015. — Volume 1. — № 1. — P. 45-54. |
Аннотация: | The problem of estimating reachable sets of nonlinear impulsive control systems with quadratic nonlinearity and with uncertainty in initial states and in the matrix of system is studied. The problem is studied under uncertainty conditions with set – membership description of uncertain variables, which are taken to be unknown but bounded with given bounds. We study the case when the system nonlinearity is generated by the combination of two types of functions in related differential equations, one of which is bilinear and the other one is quadratic. The problem may be reformulated as the problem of describing the motion of set-valued states in the state space under nonlinear dynamics with state velocities having bilinear-quadratic kind. Basing on the techniques of approximation of the generalized trajectory tubes by the solutions of control systems without measure terms and using the techniques of ellipsoidal calculus we present here a state estimation algorithms for the studied nonlinear impulsive control problem bilinear-quadratic type. |
Ключевые слова: | NONLINEAR CONTROL SYSTEMS IMPULSIVE CONTROL ELLIPSOIDAL CALCULUS TRAJECTORY TUBES ESTIMATION |
URI: | http://elar.urfu.ru/handle/10995/93109 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2015.1.004 |
Сведения о поддержке: | The research was supported by the Russian Foundation for Basic Researches (RFBR) under Project 15-01-02368a, by the Project "Positional Differential Games, Hamilton-Jacobi Equationsand Applications" in the framework of the Research Program "Mathematical Problems of Modern Control Theory" of the Presidium of Russian Academy of Sciences and by the Program "StateSupport of the Leading Scientific School" (NS-2692.2014.1). |
Источники: | Ural Mathematical Journal. 2015. Volume 1. № 1 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2015_1_1_45-54.pdf | 285,67 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons