Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93087
Название: | A Characterization of Extremal Elements in Some Linear Problems |
Авторы: | Arestov, V. V. |
Дата публикации: | 2017 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Arestov V. V. A Characterization of Extremal Elements in Some Linear Problems / V. V. Arestov. — DOI 10.15826/umj.2017.2.004. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 2. — P. 22-32. |
Аннотация: | We give a characterization of elements of a subspace of a complex Banach space with the property that the norm of a bounded linear functional on the subspace is attained at those elements. In particular, we discuss properties of polynomials that are extremal in sharp pointwise Nikol'skii inequalities for algebraic polynomials in a weighted Lq-space on a finite or infinite interval. |
Ключевые слова: | COMPLEX BANACH SPACE BOUNDED LINEAR FUNCTIONAL ON A SUBSPACE ALGEBRAIC POLYNOMIAL POINTWISE NIKOL'SKII INEQUALITY |
URI: | http://elar.urfu.ru/handle/10995/93087 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2017.2.004 |
Сведения о поддержке: | This work was supported by the Program of the Ural Branch of the Russian Academy of Sciences (project no. 15-16-1-4). The author is grateful to Professor P.A. Borodin for useful and fruitful discussions of the topic of geometry of complex Banach spaces. The authoris thankful to the referees who carefully read the paper and made a number of useful suggestions. |
Источники: | Ural Mathematical Journal. 2017. Volume 3. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2017_3_2_22-32.pdf | 203,69 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons